Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antibacterial Activities of New Bivalent Complexes of Transition Metals
Corresponding Author(s) : Sangeeta Sharma
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
This paper describes the synthesis, spectral studies and antimicrobial properties of the complexes with the formula [M(C30H24N4O2)Cl2], where M = Fe(II), Co(II), Ni(II), Zn(II) and Cu(II). These complexes were prepared by yield effective template condensation of hexamethylenediamine and 2,2-dihydroxyindane-1,3-dione(ninhydrin). The synthesized complexes were characterized by elemental analysis, infrared spectra, thermogravimetric analysis, Mass spectrum, 13C NMR, molar conductance, electronic spectra, magnetic measurements. TGA and X-ray diffraction studies were used to ascertain the crystal structure and thermal stability of the complexes. The antimicrobial properties of complexes against two Gram-positive bacteria and two Gram-negative bacteria were evaluated by Agar well diffusion technique. Streptomycin and chloramphenicol were taken as standard antibiotics. The results shows that some of the complexes have potential to act as antibacterial agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.H. Chohan, H. Pervez, A. Rauf, K.M. Khan and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 19, 417 (2004); https://doi.org/10.1080/14756360410001710383.
- S. Fortuna, F. Fogolari and G. Scoles, Sci. Rep., 5, 15633 (2015); https://doi.org/10.1038/srep15633.
- D.J. Cram, Angew. Chem. Int. Ed. Engl., 27, 1009 (1988); https://doi.org/10.1002/anie.198810093.
- R. Sharma, Prabhat, R. Singh, S. Pawar and A. Chauhan, J. Am. Sci., 6, 559 (2010); https://doi.org/10.7537/marsjas060910.64.
- Q. Zheng, H. Dai, E.M. Matthew, C. Malloy, C.Y. Pan, W.-H. Li, J. Am. Chem. Soc., 9, 46 (2005); https://doi.org/10.1021/ja054593v.
- J. Forestier, J. Lab. Clin. Med., 20, 827 (1935).
- W.O. Foye, T.L. Lemke and D.A. Williams, Foye’s Principles of Medicinal Chemistry, Lippincott Williams & Wilkins, p. 989 (2007).
- G. Kapoor and S. Saigal Elongavan, J. Anaesthesiol. Clin. Pharmacol., 33, 3 (2017).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- S. Chandra, R. Gupta, N. Gupta and S.S. Bawa, Transition Met. Chem., 31, 147 (2006); https://doi.org/10.1007/s11243-005-6194-5.
- L.K. Gupta and S. Chandra, Transition Met. Chem., 31, 368 (2006); https://doi.org/10.1007/s11243-005-0002-0.
- S. Chandra and S. Sharma, J. Indian Chem. Soc., 83, 988 (2006).
- L.K. Gupta and S. Chandra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 792 (2006); https://doi.org/10.1016/j.saa.2005.12.042.
- S. Chandra, R. Kumar, R. Singh and A.K. Jain, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 852 (2006); https://doi.org/10.1016/j.saa.2006.01.005.
- J.R. Ferraro, Low Frequency Vibrations of Inorganic and Co-Ordination Compounds, Part B, Wiley Interscience: New York, edn 5 (1997).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
- D.M.L. Goodgame, M. Goodgame, M.A. Hitchman and M.J. Weeks, Inorg. Chem., 5, 635 (1966); https://doi.org/10.1021/ic50038a029.
- S. Chandra and A.K. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 851 (2009); https://doi.org/10.1016/j.saa.2008.12.022.
- J. Cisterna, V. Artigas, M. Fuentealba, P. Hamon, C. Manzur, V. Dorcet, J.-R. Hamon and D. Carrillo, Inorg. Chim. Acta, 462, 266 (2017); https://doi.org/10.1016/j.ica.2017.04.001.
- G.G. Mohamed, M.M. Omar and A.M.M. Hindy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031.
- V.B. Rana, D.P. Singh, P. Singh and M.P. Teotia, Transition Met. Chem, 6, 36 (1981); https://doi.org/10.1007/BF01143465.
- J.M. Al-Jeboori, Der Chem. Sinica, 7, 53 (2016).
- P. Rathi, D.P. Singh and P. Surain, C.R. Chim., 18, 430 (2015); https://doi.org/10.1016/j.crci.2014.08.002.
- NCCLS, Method for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically, Approved Standards, National Committee for Clinical Laboratory Standards, Villanova, PA, edn 5, M7-A5 (2000).
- D. Greenwood, R. Slack and J. Peutherer, Medical Microbiology: A Guide to Microbial Infections: Pathogensis, Immunity, Laboratory Diagnosis and Control, ELST Publishers: Edinburgh, edn 15 (1997).
- B. Mummed, A. Abraha, T. Feyera, A. Nigusse and S. Assefa, Bio-Med Res. Int., 2018, Article ID 1862401 (2018); https://doi.org/10.1155/2018/1862401.
- M.B. Halli and R.B. Sumathi, Arab. J. Chem., 10(Suppl. 2), s1748 (2017); https://doi.org/10.1016/j.arabjc.2013.06.025.
References
Z.H. Chohan, H. Pervez, A. Rauf, K.M. Khan and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 19, 417 (2004); https://doi.org/10.1080/14756360410001710383.
S. Fortuna, F. Fogolari and G. Scoles, Sci. Rep., 5, 15633 (2015); https://doi.org/10.1038/srep15633.
D.J. Cram, Angew. Chem. Int. Ed. Engl., 27, 1009 (1988); https://doi.org/10.1002/anie.198810093.
R. Sharma, Prabhat, R. Singh, S. Pawar and A. Chauhan, J. Am. Sci., 6, 559 (2010); https://doi.org/10.7537/marsjas060910.64.
Q. Zheng, H. Dai, E.M. Matthew, C. Malloy, C.Y. Pan, W.-H. Li, J. Am. Chem. Soc., 9, 46 (2005); https://doi.org/10.1021/ja054593v.
J. Forestier, J. Lab. Clin. Med., 20, 827 (1935).
W.O. Foye, T.L. Lemke and D.A. Williams, Foye’s Principles of Medicinal Chemistry, Lippincott Williams & Wilkins, p. 989 (2007).
G. Kapoor and S. Saigal Elongavan, J. Anaesthesiol. Clin. Pharmacol., 33, 3 (2017).
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
S. Chandra, R. Gupta, N. Gupta and S.S. Bawa, Transition Met. Chem., 31, 147 (2006); https://doi.org/10.1007/s11243-005-6194-5.
L.K. Gupta and S. Chandra, Transition Met. Chem., 31, 368 (2006); https://doi.org/10.1007/s11243-005-0002-0.
S. Chandra and S. Sharma, J. Indian Chem. Soc., 83, 988 (2006).
L.K. Gupta and S. Chandra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 792 (2006); https://doi.org/10.1016/j.saa.2005.12.042.
S. Chandra, R. Kumar, R. Singh and A.K. Jain, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 852 (2006); https://doi.org/10.1016/j.saa.2006.01.005.
J.R. Ferraro, Low Frequency Vibrations of Inorganic and Co-Ordination Compounds, Part B, Wiley Interscience: New York, edn 5 (1997).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
D.M.L. Goodgame, M. Goodgame, M.A. Hitchman and M.J. Weeks, Inorg. Chem., 5, 635 (1966); https://doi.org/10.1021/ic50038a029.
S. Chandra and A.K. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 851 (2009); https://doi.org/10.1016/j.saa.2008.12.022.
J. Cisterna, V. Artigas, M. Fuentealba, P. Hamon, C. Manzur, V. Dorcet, J.-R. Hamon and D. Carrillo, Inorg. Chim. Acta, 462, 266 (2017); https://doi.org/10.1016/j.ica.2017.04.001.
G.G. Mohamed, M.M. Omar and A.M.M. Hindy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 62, 1140 (2005); https://doi.org/10.1016/j.saa.2005.03.031.
V.B. Rana, D.P. Singh, P. Singh and M.P. Teotia, Transition Met. Chem, 6, 36 (1981); https://doi.org/10.1007/BF01143465.
J.M. Al-Jeboori, Der Chem. Sinica, 7, 53 (2016).
P. Rathi, D.P. Singh and P. Surain, C.R. Chim., 18, 430 (2015); https://doi.org/10.1016/j.crci.2014.08.002.
NCCLS, Method for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically, Approved Standards, National Committee for Clinical Laboratory Standards, Villanova, PA, edn 5, M7-A5 (2000).
D. Greenwood, R. Slack and J. Peutherer, Medical Microbiology: A Guide to Microbial Infections: Pathogensis, Immunity, Laboratory Diagnosis and Control, ELST Publishers: Edinburgh, edn 15 (1997).
B. Mummed, A. Abraha, T. Feyera, A. Nigusse and S. Assefa, Bio-Med Res. Int., 2018, Article ID 1862401 (2018); https://doi.org/10.1155/2018/1862401.
M.B. Halli and R.B. Sumathi, Arab. J. Chem., 10(Suppl. 2), s1748 (2017); https://doi.org/10.1016/j.arabjc.2013.06.025.