Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Facile One-Pot Synthesis of Benzo[h]isoquinolines via Strong Acid Triggered [1,2]-Sigmatropic Rearrangement: A Theoretical and Experimental Studies
Corresponding Author(s) : V.M. Boitsov
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Benzo[h]isoquinoline scaffold is of interest as a rigid subunit that can be useful for constructing biologically active products. However, no good-yielded synthetic pathway to this ring system has been reported yet. Herein, a facile one-pot synthesis from N-aryl itaconimides and 1,3-diarylisobenzofuran via strong acid triggered skeletal rearrangement reaction is described. Theoretical study for this rearrangement is provided at M11/cc-pVDZ level of theory. Antitumor activity of obtained benzo[h]isoquinoline derivatives against human erythroleukemia K562 cell line was evaluated in vitro by MTS-assay.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.B. Toure and D.G. Hall, Chem. Rev., 109, 4439 (2009); https://doi.org/10.1021/cr800296p.
- K. Takao, R. Munakata and K. Tadano, Chem. Rev., 105, 4779 (2005); https://doi.org/10.1021/cr040632u.
- I. Drutu, E.S. Krygowski and J.L. Wood, J. Org. Chem., 66, 7025 (2001); https://doi.org/10.1021/jo015741c.
- G. Mehta and A. Srikrishna, Chem. Rev., 97, 671 (1997); https://doi.org/10.1021/cr9403650.
- F.-P. Montforts, B. Gerlach and F. Hoeper, Chem. Rev., 94, 327 (1994); https://doi.org/10.1021/cr00026a003.
- F.-E. Chen and J. Huang, Chem. Rev., 105, 4671 (2005); https://doi.org/10.1021/cr050521a.
- U. Kulesza, R. Sigüeiro, A. Mourino and R.R. Sicinski, J. Org. Chem., 78, 1444 (2013); https://doi.org/10.1021/jo302513e.
- V. Singh, G.D. Praveena, K. Karki and Sh.M. Mobin, J. Org. Chem., 72, 2058 (2007); https://doi.org/10.1021/jo062416m.
- H. McNab and R.G. Tyas, J. Org. Chem., 72, 8760 (2007); https://doi.org/10.1021/jo0712502.
- T.M.V.D. Pinho e Melo, M.I.L. Soares, J.A. Paixão, A.M. Beja and M.R. Silva, J. Org. Chem., 70, 6629 (2005); https://doi.org/10.1021/jo050480i.
- A.S. Filatov, N.A. Knyazev, A.P. Molchanov, T.L. Panikorovsky, R.R. Kostikov, A.G. Larina, V.M. Boitsov and A.V. Stepakov, J. Org. Chem., 82, 959 (2017); https://doi.org/10.1021/acs.joc.6b02505.
- A.S. Filatov, N.A. Knyazev, M.N. Ryazantsev, V.V. Suslonov, A.G. Larina, A.P. Molchanov, R.R. Kostikov, V.M. Boitsov and A.V. Stepakov, Org. Chem. Front., 5, 595 (2018); https://doi.org/10.1039/C7QO00888K.
- A.S. Filatov, N.A. Knyazev, S.V. Shmakov, A.A. Bogdanov, M.N. Ryazantsev, A.A. Shtyrov, G.L. Starova, A.P. Molchanov, A.G. Larina, V.M. Boitsov and A.V. Stepakov, Synthesis, 51, 713 (2019); https://doi.org/10.1055/s-0037-1611059.
- L.A. Bonner, B.R. Chemel, V.J. Watts and D.E. Nichols, Bioorg. Med. Chem., 18, 6763 (2010); https://doi.org/10.1016/j.bmc.2010.07.052.
- J.G. Cannon, T. Lee, F.-L. Hsu, J.P. Long and J.R. Flynn, J. Med. Chem., 23, 502 (1980); https://doi.org/10.1021/jm00179a006.
- D.E. Nichols and V.J. Watts, Patent WO 2010/124005 A1 (2010).
- H. Stadler, J. Wichmann, A.J. Sleight and M. Bös, Chimia, 54, 669 (2000).
- M. Bös, H. Stadler, J. Wichmann, F. Jenck, J.R. Martin, J.-L. Moreau and A.J. Sleight, Helv. Chim. Acta, 81, 525 (1998); https://doi.org/10.1002/hlca.19980810306.
- M. Bös, H. Stadler and J. Wichmann, U.S. Patent 6,310,208 B1 (2001).
- J.A. Diaz-Martin, B.E. Arenales and M.D. Jimenez Bargueno, U.S. Patent 7,678,807 B2 (2010).
- J.A. Diaz-Martin, B.E. Arenales and M.D. Jimenez-Bargueno, Patent WO 2007/060027 A1 (2007).
- R.M. Garbaccio, S. Huang, E.S. Tasber, M.E. Fraley, Y. Yan, S. Munshi, M. Ikuta, L. Kuo, C. Kreatsoulas, S. Stirdivant, B. Drakas, K. Rickert, E.S. Walsh, K.A. Hamilton, C.A. Buser, J. Hardwick, X. Mao, S.C. Beck, M.T. Abrams, W. Tao, R. Lobell, L. Sepp-Lorenzino and G.D. Hartman, Bioorg. Med. Chem. Lett., 17, 6280 (2007); https://doi.org/10.1016/j.bmcl.2007.09.007.
- N. Atatreh, C. Stojkoski, P. Smith, G.W. Booker, C. Dive, A.D. Frenkel, S. Freeman and R.A. Bryce, Bioorg. Med. Chem. Lett., 18, 1217 (2008); https://doi.org/10.1016/j.bmcl.2007.11.115.
- C.F. Koelsch and R.M. Lindquist, J. Org. Chem., 21, 657 (1956); https://doi.org/10.1021/jo01112a018.
- M.S. Ledovskaya, A.P. Molchanov, R.R. Kostikov, T.L. Panikorovsky, V.V. Gurzhiy, M.N. Ryazantsev, V.M. Boitsov and A.V. Stepakov, Tetrahedron, 72, 4827 (2016); https://doi.org/10.1016/j.tet.2016.06.048.
- V. Mamane, F. Louërat, J. Iehl, M. Abboud and Y. Fort, Tetrahedron, 64, 10699 (2008); https://doi.org/10.1016/j.tet.2008.09.015.
- L. Castedo, M.M. Cid, J.A. Seijas and M.C. Villaverde, Tetrahedron Lett., 32, 3871 (1991); https://doi.org/10.1016/S0040-4039(00)79400-7.
- A. Li, T.M. Gilbert and D.A. Klumpp, J. Org. Chem., 73, 3654 (2008); https://doi.org/10.1021/jo8003474.
- D.C. Harrowven, B.J. Sutton and S. Coulton, Org. Biomol. Chem., 1, 4047 (2003); https://doi.org/10.1039/b309331j.
- V. Anand and V. Choudhary, J. Appl. Polym. Sci., 82, 2078 (2001); https://doi.org/10.1002/app.2053.
- A.V. Stepakov, V.M. Boitsov, A.G. Larina and A.P. Molchanov, Tetrahedron Lett., 55, 4895 (2014); https://doi.org/10.1016/j.tetlet.2014.06.107.
- S. Maeda, K. Ohno and K. Morokuma, Phys. Chem. Chem. Phys., 15, 3683 (2013); https://doi.org/10.1039/c3cp44063j.
- D.S. Parker, B.B. Dangi, R.I. Kaiser, A. Jamal, M. Ryazantsev and K. Morokuma, J. Phys. Chem. A, 118, 12111 (2014); https://doi.org/10.1021/jp509990u.
- M.N. Ryazantsev, A. Jamal, S. Maeda and K. Morokuma, Phys. Chem. Chem. Phys., 17, 27789 (2015); https://doi.org/10.1039/C5CP04329H.
- L.G. Muzangwa, T. Yang, D.S. Parker, R.I. Kaiser, A.M. Mebel, A. Jamal, M. Ryazantsev and K. Morokuma, Phys. Chem. Chem. Phys., 17, 7699 (2015); https://doi.org/10.1039/C5CP00311C.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai and T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.01; Gaussian, Inc: Wallingford (2009).
- Crystallographic data for the co-crystallized 3l and 4l mixture have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1882718. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).
- A.P. Molchanov, A.V. Stepakov, V.M. Boitsov and R.R. Kostikov, Russ. Chem. Bull., 62, 1038 (2013); https://doi.org/10.1007/s11172-013-0138-6.
References
B.B. Toure and D.G. Hall, Chem. Rev., 109, 4439 (2009); https://doi.org/10.1021/cr800296p.
K. Takao, R. Munakata and K. Tadano, Chem. Rev., 105, 4779 (2005); https://doi.org/10.1021/cr040632u.
I. Drutu, E.S. Krygowski and J.L. Wood, J. Org. Chem., 66, 7025 (2001); https://doi.org/10.1021/jo015741c.
G. Mehta and A. Srikrishna, Chem. Rev., 97, 671 (1997); https://doi.org/10.1021/cr9403650.
F.-P. Montforts, B. Gerlach and F. Hoeper, Chem. Rev., 94, 327 (1994); https://doi.org/10.1021/cr00026a003.
F.-E. Chen and J. Huang, Chem. Rev., 105, 4671 (2005); https://doi.org/10.1021/cr050521a.
U. Kulesza, R. Sigüeiro, A. Mourino and R.R. Sicinski, J. Org. Chem., 78, 1444 (2013); https://doi.org/10.1021/jo302513e.
V. Singh, G.D. Praveena, K. Karki and Sh.M. Mobin, J. Org. Chem., 72, 2058 (2007); https://doi.org/10.1021/jo062416m.
H. McNab and R.G. Tyas, J. Org. Chem., 72, 8760 (2007); https://doi.org/10.1021/jo0712502.
T.M.V.D. Pinho e Melo, M.I.L. Soares, J.A. Paixão, A.M. Beja and M.R. Silva, J. Org. Chem., 70, 6629 (2005); https://doi.org/10.1021/jo050480i.
A.S. Filatov, N.A. Knyazev, A.P. Molchanov, T.L. Panikorovsky, R.R. Kostikov, A.G. Larina, V.M. Boitsov and A.V. Stepakov, J. Org. Chem., 82, 959 (2017); https://doi.org/10.1021/acs.joc.6b02505.
A.S. Filatov, N.A. Knyazev, M.N. Ryazantsev, V.V. Suslonov, A.G. Larina, A.P. Molchanov, R.R. Kostikov, V.M. Boitsov and A.V. Stepakov, Org. Chem. Front., 5, 595 (2018); https://doi.org/10.1039/C7QO00888K.
A.S. Filatov, N.A. Knyazev, S.V. Shmakov, A.A. Bogdanov, M.N. Ryazantsev, A.A. Shtyrov, G.L. Starova, A.P. Molchanov, A.G. Larina, V.M. Boitsov and A.V. Stepakov, Synthesis, 51, 713 (2019); https://doi.org/10.1055/s-0037-1611059.
L.A. Bonner, B.R. Chemel, V.J. Watts and D.E. Nichols, Bioorg. Med. Chem., 18, 6763 (2010); https://doi.org/10.1016/j.bmc.2010.07.052.
J.G. Cannon, T. Lee, F.-L. Hsu, J.P. Long and J.R. Flynn, J. Med. Chem., 23, 502 (1980); https://doi.org/10.1021/jm00179a006.
D.E. Nichols and V.J. Watts, Patent WO 2010/124005 A1 (2010).
H. Stadler, J. Wichmann, A.J. Sleight and M. Bös, Chimia, 54, 669 (2000).
M. Bös, H. Stadler, J. Wichmann, F. Jenck, J.R. Martin, J.-L. Moreau and A.J. Sleight, Helv. Chim. Acta, 81, 525 (1998); https://doi.org/10.1002/hlca.19980810306.
M. Bös, H. Stadler and J. Wichmann, U.S. Patent 6,310,208 B1 (2001).
J.A. Diaz-Martin, B.E. Arenales and M.D. Jimenez Bargueno, U.S. Patent 7,678,807 B2 (2010).
J.A. Diaz-Martin, B.E. Arenales and M.D. Jimenez-Bargueno, Patent WO 2007/060027 A1 (2007).
R.M. Garbaccio, S. Huang, E.S. Tasber, M.E. Fraley, Y. Yan, S. Munshi, M. Ikuta, L. Kuo, C. Kreatsoulas, S. Stirdivant, B. Drakas, K. Rickert, E.S. Walsh, K.A. Hamilton, C.A. Buser, J. Hardwick, X. Mao, S.C. Beck, M.T. Abrams, W. Tao, R. Lobell, L. Sepp-Lorenzino and G.D. Hartman, Bioorg. Med. Chem. Lett., 17, 6280 (2007); https://doi.org/10.1016/j.bmcl.2007.09.007.
N. Atatreh, C. Stojkoski, P. Smith, G.W. Booker, C. Dive, A.D. Frenkel, S. Freeman and R.A. Bryce, Bioorg. Med. Chem. Lett., 18, 1217 (2008); https://doi.org/10.1016/j.bmcl.2007.11.115.
C.F. Koelsch and R.M. Lindquist, J. Org. Chem., 21, 657 (1956); https://doi.org/10.1021/jo01112a018.
M.S. Ledovskaya, A.P. Molchanov, R.R. Kostikov, T.L. Panikorovsky, V.V. Gurzhiy, M.N. Ryazantsev, V.M. Boitsov and A.V. Stepakov, Tetrahedron, 72, 4827 (2016); https://doi.org/10.1016/j.tet.2016.06.048.
V. Mamane, F. Louërat, J. Iehl, M. Abboud and Y. Fort, Tetrahedron, 64, 10699 (2008); https://doi.org/10.1016/j.tet.2008.09.015.
L. Castedo, M.M. Cid, J.A. Seijas and M.C. Villaverde, Tetrahedron Lett., 32, 3871 (1991); https://doi.org/10.1016/S0040-4039(00)79400-7.
A. Li, T.M. Gilbert and D.A. Klumpp, J. Org. Chem., 73, 3654 (2008); https://doi.org/10.1021/jo8003474.
D.C. Harrowven, B.J. Sutton and S. Coulton, Org. Biomol. Chem., 1, 4047 (2003); https://doi.org/10.1039/b309331j.
V. Anand and V. Choudhary, J. Appl. Polym. Sci., 82, 2078 (2001); https://doi.org/10.1002/app.2053.
A.V. Stepakov, V.M. Boitsov, A.G. Larina and A.P. Molchanov, Tetrahedron Lett., 55, 4895 (2014); https://doi.org/10.1016/j.tetlet.2014.06.107.
S. Maeda, K. Ohno and K. Morokuma, Phys. Chem. Chem. Phys., 15, 3683 (2013); https://doi.org/10.1039/c3cp44063j.
D.S. Parker, B.B. Dangi, R.I. Kaiser, A. Jamal, M. Ryazantsev and K. Morokuma, J. Phys. Chem. A, 118, 12111 (2014); https://doi.org/10.1021/jp509990u.
M.N. Ryazantsev, A. Jamal, S. Maeda and K. Morokuma, Phys. Chem. Chem. Phys., 17, 27789 (2015); https://doi.org/10.1039/C5CP04329H.
L.G. Muzangwa, T. Yang, D.S. Parker, R.I. Kaiser, A.M. Mebel, A. Jamal, M. Ryazantsev and K. Morokuma, Phys. Chem. Chem. Phys., 17, 7699 (2015); https://doi.org/10.1039/C5CP00311C.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai and T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.01; Gaussian, Inc: Wallingford (2009).
Crystallographic data for the co-crystallized 3l and 4l mixture have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1882718. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).
A.P. Molchanov, A.V. Stepakov, V.M. Boitsov and R.R. Kostikov, Russ. Chem. Bull., 62, 1038 (2013); https://doi.org/10.1007/s11172-013-0138-6.