Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Electrochemical Studies of Hexamethyldibenzotetraaza N4-Macrocyclic Complexes of Ni(II) and Cu(II) Metal ions
Corresponding Author(s) : Vinod Kumar Vashistha
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Hexamethyldibenzotetraaza[14]annulene type macrocyclic complexes of Ni(II) and Cu(II) have been synthesized by template method. These macrocyclic complexes were characterized by molar conductance, elemental analysis, IR, UV-visible, mass spectra and cyclic voltammetry. On the basis of electronic studies saddle shape distorted octahedral structure have been assigned to these macrocyclic complexes. The redox behaviour of Ni(II) and Cu(II) macrocyclic complexes showed reversible and quasi-irreversible redox process that supported by the ipc/ipa ratio which is in good agreement with Randles-Sevcik equation. These macrocyclic complexes were also studied for the antimicrobial activity against E. coli, P. aeruginosa, B. subtilis, S. aureus and C. albicans compared with gentamycin as standard drug.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Vijayaraj, R. Prabu, R. Suresh, C. Sivaraj, N. Raaman and V. Narayanan, J. Coord. Chem., 64, 637 (2011); https://doi.org/10.1080/00958972.2011.553221.
- S. Ciurli, E.M. Meyer, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc. Chem. Commun.., 281, (1987); https://doi.org/10.1039/C39870000281.
- R.R. Gagne, C.L. Spiro, T.J. Smith, C.A. Hamann, W.R. Thies and A.D. Shiemke, J. Am. Chem. Soc., 103, 4073 (1981); https://doi.org/10.1021/ja00404a017.
- D.A. Place, G.P. Ferrara and J.J. Harland, J. Hetrocycl. Chem., 17, 439 (1980); https://doi.org/10.1002/jhet.5570170305.
- M.C. Weiss, G.C. Gordon and V.L. Goedken, J. Am. Chem. Soc., 101, 857 (1979); https://doi.org/10.1021/ja00498a013.
- D.H. Busch, Acc. Chem. Res., 11, 392 (1978); https://doi.org/10.1021/ar50130a005.
- C. Bernar, Y.L. Mest and J.P. Gisselbrecht, Inorg. Chem., 37, 181 (1998); https://doi.org/10.1021/ic970472n.
- B.M. Haffman, C.J. Weschler and F. Basolo, J. Am. Chem. Soc., 98, 5473 (1976); https://doi.org/10.1021/ja00434a012.
- C.S. Dilip, V. Sivakumar and J.J. Prince, Indian J. Chem. Technol., 19, 351 (2012).
- V.L. Goedken, Y.-A. Park, S.-M. Peng and J.M. Norris, J. Am. Chem. Soc., 96, 7693, (1974); https://doi.org/10.1021/ja00832a016.
- A.J. Blake, J. Casabò, F.A. Devillanova, L. Escriche, A. Garau, F. Isaia, V. Lippolis, R. Kivekas, V. Muns, M. Schröder, R. Sillanpää and G. Verani, J. Chem. Soc. Dalton Trans., 1085 (1999); https://doi.org/10.1039/A808062C.
- Z.A. Siddiqi, M. Khalid and S. Kumar, Transition Met. Chem., 32, 913 (2007); https://doi.org/10.1007/s11243-007-0252-0.
- A. Kumar, V.K. Vashistha, P. Tevatia and R Singh, Anal. Bioanal. Electrochem., 8, 848 (2016).
- A. Kumar, V.K. Vashistha, P. Tevatia, Sweety and R. Singh, Der Pharm. Chem., 8, 146 (2016).
- A. Kumar, V.K. Vashistha, P. Tevatia and R Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 176, 123 (2017); https://doi.org/10.1016/j.saa.2016.12.011.
- E. Tas, M. Ulusoy, M. Guler and I. Yilmaz, Transition Met. Chem., 29, 180 (2004); https://doi.org/10.1023/B:TMCH.0000019417.35877.b9.
- H. Unver and Z. Hayvah, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 75, 782 (2010); https://doi.org/10.1016/j.saa.2009.11.055.
- N.V. Roznyatovskaya, G.A. Tsirlina, V.V. Roznyatovskii, M.D. Reshetova and Y.A. Ustynyuk, Russ. J. Electrochem., 40, 955 (2004). https://doi.org/10.1023/B:RUEL.0000041363.12965.dc.
- H. Wu, Y. Zhang, J. Zhang, Z. Yang, C. Chen, H. Peng and F. Wang, Transition Met. Chem., 40, 152 (2015); https://doi.org/10.1007/s11243-014-9900-3.
- P.M. Reddy, R. Rohini, E.R. Krishna, A. Hu and V. Ravinder, Int. J. Mol. Sci., 13, 4982 (2012); https://doi.org/10.3390/ijms13044982.
- M.Y. Udugala-Ganehenege, N.M. Dissanayake, Y. Liu, A.M. Bond and J. Zhang, Transition Met. Chem., 39, 819 (2014); https://doi.org/10.1007/s11243-014-9864-3.
- A.D. Kulkarni, S.A. Patil and P.S. Badami, Int. J. Electrochem. Sci., 4, 717 (2009).
- H.M. Al-Bishri, E.H. El-Mossalamy, I. El-Hallag and S. El-Daly, J. Korean Chem. Soc., 55, 169 (2011); https://doi.org/10.5012/jkcs.2011.55.2.169.
- A.K. Mishra, B. Bhattachrjee and S.K. Rangarajan, J. Electronal. Chem., 331, 801 (1992); https://doi.org/10.1016/0022-0728(92)85007-P.
- K. Sakata, H. Nakamura and M. Hashimato, Inorg. Chim. Acta, 83, 167 (1984); https://doi.org/10.1016/S0020-1693(00)82375-0.
- K. Sakata, O. Terada, T. Honda, and M. Hashimato, Synth. React. Inorg. Met.-Org. Chem., 23, 373 (1993); https://doi.org/10.1080/15533179308016644.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
- K. Sakata, M. Hashimato and H. Yoshino, Inorg. Chim. Acta, 99, 231 (1985); https://doi.org/10.1016/S0020-1693(00)87973-6.
- J.M. Andrews, J. Antimicrob. Chemother., 48, 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5.
- M.E. Hossain, M.N. Alam, J. Begum, M.A. Ali, M. Nazimuddin, F.E. Smith, R.C. Hynes, Inorg. Chim. Acta, 249, 207 (1996); https://doi.org/10.1016/0020-1693(96)05098-0.
References
A. Vijayaraj, R. Prabu, R. Suresh, C. Sivaraj, N. Raaman and V. Narayanan, J. Coord. Chem., 64, 637 (2011); https://doi.org/10.1080/00958972.2011.553221.
S. Ciurli, E.M. Meyer, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc. Chem. Commun.., 281, (1987); https://doi.org/10.1039/C39870000281.
R.R. Gagne, C.L. Spiro, T.J. Smith, C.A. Hamann, W.R. Thies and A.D. Shiemke, J. Am. Chem. Soc., 103, 4073 (1981); https://doi.org/10.1021/ja00404a017.
D.A. Place, G.P. Ferrara and J.J. Harland, J. Hetrocycl. Chem., 17, 439 (1980); https://doi.org/10.1002/jhet.5570170305.
M.C. Weiss, G.C. Gordon and V.L. Goedken, J. Am. Chem. Soc., 101, 857 (1979); https://doi.org/10.1021/ja00498a013.
D.H. Busch, Acc. Chem. Res., 11, 392 (1978); https://doi.org/10.1021/ar50130a005.
C. Bernar, Y.L. Mest and J.P. Gisselbrecht, Inorg. Chem., 37, 181 (1998); https://doi.org/10.1021/ic970472n.
B.M. Haffman, C.J. Weschler and F. Basolo, J. Am. Chem. Soc., 98, 5473 (1976); https://doi.org/10.1021/ja00434a012.
C.S. Dilip, V. Sivakumar and J.J. Prince, Indian J. Chem. Technol., 19, 351 (2012).
V.L. Goedken, Y.-A. Park, S.-M. Peng and J.M. Norris, J. Am. Chem. Soc., 96, 7693, (1974); https://doi.org/10.1021/ja00832a016.
A.J. Blake, J. Casabò, F.A. Devillanova, L. Escriche, A. Garau, F. Isaia, V. Lippolis, R. Kivekas, V. Muns, M. Schröder, R. Sillanpää and G. Verani, J. Chem. Soc. Dalton Trans., 1085 (1999); https://doi.org/10.1039/A808062C.
Z.A. Siddiqi, M. Khalid and S. Kumar, Transition Met. Chem., 32, 913 (2007); https://doi.org/10.1007/s11243-007-0252-0.
A. Kumar, V.K. Vashistha, P. Tevatia and R Singh, Anal. Bioanal. Electrochem., 8, 848 (2016).
A. Kumar, V.K. Vashistha, P. Tevatia, Sweety and R. Singh, Der Pharm. Chem., 8, 146 (2016).
A. Kumar, V.K. Vashistha, P. Tevatia and R Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 176, 123 (2017); https://doi.org/10.1016/j.saa.2016.12.011.
E. Tas, M. Ulusoy, M. Guler and I. Yilmaz, Transition Met. Chem., 29, 180 (2004); https://doi.org/10.1023/B:TMCH.0000019417.35877.b9.
H. Unver and Z. Hayvah, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 75, 782 (2010); https://doi.org/10.1016/j.saa.2009.11.055.
N.V. Roznyatovskaya, G.A. Tsirlina, V.V. Roznyatovskii, M.D. Reshetova and Y.A. Ustynyuk, Russ. J. Electrochem., 40, 955 (2004). https://doi.org/10.1023/B:RUEL.0000041363.12965.dc.
H. Wu, Y. Zhang, J. Zhang, Z. Yang, C. Chen, H. Peng and F. Wang, Transition Met. Chem., 40, 152 (2015); https://doi.org/10.1007/s11243-014-9900-3.
P.M. Reddy, R. Rohini, E.R. Krishna, A. Hu and V. Ravinder, Int. J. Mol. Sci., 13, 4982 (2012); https://doi.org/10.3390/ijms13044982.
M.Y. Udugala-Ganehenege, N.M. Dissanayake, Y. Liu, A.M. Bond and J. Zhang, Transition Met. Chem., 39, 819 (2014); https://doi.org/10.1007/s11243-014-9864-3.
A.D. Kulkarni, S.A. Patil and P.S. Badami, Int. J. Electrochem. Sci., 4, 717 (2009).
H.M. Al-Bishri, E.H. El-Mossalamy, I. El-Hallag and S. El-Daly, J. Korean Chem. Soc., 55, 169 (2011); https://doi.org/10.5012/jkcs.2011.55.2.169.
A.K. Mishra, B. Bhattachrjee and S.K. Rangarajan, J. Electronal. Chem., 331, 801 (1992); https://doi.org/10.1016/0022-0728(92)85007-P.
K. Sakata, H. Nakamura and M. Hashimato, Inorg. Chim. Acta, 83, 167 (1984); https://doi.org/10.1016/S0020-1693(00)82375-0.
K. Sakata, O. Terada, T. Honda, and M. Hashimato, Synth. React. Inorg. Met.-Org. Chem., 23, 373 (1993); https://doi.org/10.1080/15533179308016644.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
K. Sakata, M. Hashimato and H. Yoshino, Inorg. Chim. Acta, 99, 231 (1985); https://doi.org/10.1016/S0020-1693(00)87973-6.
J.M. Andrews, J. Antimicrob. Chemother., 48, 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5.
M.E. Hossain, M.N. Alam, J. Begum, M.A. Ali, M. Nazimuddin, F.E. Smith, R.C. Hynes, Inorg. Chim. Acta, 249, 207 (1996); https://doi.org/10.1016/0020-1693(96)05098-0.