Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of C18-Cellulose Triacetate Thin Film for Analysis of Caffeine Residue in Water
Corresponding Author(s) : W.M.A.W.M. Khalik
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
This study report the optimal condition of an extraction method for caffeine residue analysis in water. C18 was impregnated with cellulose triacetate by using a solution casting method to produce a thin film. Optimization work was performed based on a 23-full factorial central composite design, which was subjected to salt addition, extraction time, and stirring rate as the main parameters. The optimum condition suggested by the model was as follows; salt addition (0.6 %, m/v), extraction time (11 min) and stirring rate (300 rpm). The generated model and 2-way interaction were significant at p < 0.05. Detection and quantification limits of the developed method were calculated at 0.06 and 0.21 ng/mL, respectively. The thin film displayed exceptional recovery (83.90-98.50 %) and repeatability (7.71-12.40 % RSD) at two levels of concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Rodriguez del Rey, E.F. Granek and S. Sylvester, Mar. Pollut. Bull., 64, 1417 (2012); https://doi.org/10.1016/j.marpolbul.2012.04.015.
- P. Paiga and C. Delerue-Matos, Mar. Pollut. Bull., 120, 355 (2017); https://doi.org/10.1016/j.marpolbul.2017.05.030.
- G. Viviano, S. Valsecchi, S. Polesello, A. Capodaglio, G. Tartari and F. Salerno, Water Air Soil Pollut., 228, 330 (2017); https://doi.org/10.1007/s11270-017-3505-3.
- Q.A. Edwards, S.M. Kulikov and L.D. Garner-O’Neale, SpringerPlus, 4, 57 (2015); https://doi.org/10.1186/s40064-015-0809-x.
- P.M. Bradley, L.B. Barber, D.W. Kolpin, P.B. McMahon and F.H. Chapelle, Environ. Toxicol. Chem., 26, 1116 (2007); https://doi.org/10.1897/06-483R.1.
- E.S. Gonçalves, S.V. Rodrigues and E.V.D. Silva-Filho, Rev. Ambient. Água, 12, 192 (2017); https://doi.org/10.4136/ambi-agua.1974.
- J. Wu, J. Yue, R. Hu, Z. Yang and L. Zhang, Int. J. Environ. Sci. Eng., 2, 98 (2010).
- A. Togola and H. Budzinski, Anal. Bioanal. Chem., 388, 627 (2007); https://doi.org/10.1007/s00216-007-1251-x.
- F.F. Al-Qaim, S.H. Jusof, M.P. Abdullah, Z.H. Mussa, N.A. Tahrim, W.M.A.W.M. Khalik and M.R. Othman, Malays. J. Anal. Sci., 21, 95 (2017); https://doi.org/10.17576/mjas-2017-2101-11.
- W.M.A.W.M. Khalik, M.P. Abdullah, F.K. Baharudin and S.A. Zulkepli, J. Mater. Environ. Sci., 7, 720 (2016).
- M. Saraji and B. Farajmand, J. Chromatogr. A, 1314, 24 (2013); https://doi.org/10.1016/j.chroma.2013.09.018.
- T. Rönkkö, Master of Science Thesis, University of Helsinki, Helsinki, Finland (2016).
- R. Jiang and J. Pawliszyn, Trends Analyt. Chem., 39, 245 (2012); https://doi.org/10.1016/j.trac.2012.07.005.
- F.S. Mirnaghi, D. Hein and J. Pawliszyn, Chromatographia, 76, 1215 (2013); https://doi.org/10.1007/s10337-013-2443-5.
- S.S. Moghaddam, M.A. Moghaddam and M. Arami, J. Hazard. Mater., 175, 651 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.058.
- A.M. Joglekar and A.T. May, Cereal Foods World, 32, 857 (1987).
- A.C.V. Neves Junior, A. Melo, C. Pinho, R.C.C. Coneglian, A.G. Soares and I.M.P.L.V.O. Ferreira, J. Chemometr., 28, 716 (2014); https://doi.org/10.1002/cem.2639.
- N.A. Zulkipli, S.H. Loh and W.M.A.W.M. Khalik, Res. J. Chem. Environ., 23, 44 (2019).
- H. Piri-Moghadam, E. Gionfriddo, A. Rodriguez-Lafuente, J.J. Grandy, H.L. Lord, T. Obal and J. Pawliszyn, Anal. Chim. Acta, 964, 74 (2017); https://doi.org/10.1016/j.aca.2017.02.014.
References
Z. Rodriguez del Rey, E.F. Granek and S. Sylvester, Mar. Pollut. Bull., 64, 1417 (2012); https://doi.org/10.1016/j.marpolbul.2012.04.015.
P. Paiga and C. Delerue-Matos, Mar. Pollut. Bull., 120, 355 (2017); https://doi.org/10.1016/j.marpolbul.2017.05.030.
G. Viviano, S. Valsecchi, S. Polesello, A. Capodaglio, G. Tartari and F. Salerno, Water Air Soil Pollut., 228, 330 (2017); https://doi.org/10.1007/s11270-017-3505-3.
Q.A. Edwards, S.M. Kulikov and L.D. Garner-O’Neale, SpringerPlus, 4, 57 (2015); https://doi.org/10.1186/s40064-015-0809-x.
P.M. Bradley, L.B. Barber, D.W. Kolpin, P.B. McMahon and F.H. Chapelle, Environ. Toxicol. Chem., 26, 1116 (2007); https://doi.org/10.1897/06-483R.1.
E.S. Gonçalves, S.V. Rodrigues and E.V.D. Silva-Filho, Rev. Ambient. Água, 12, 192 (2017); https://doi.org/10.4136/ambi-agua.1974.
J. Wu, J. Yue, R. Hu, Z. Yang and L. Zhang, Int. J. Environ. Sci. Eng., 2, 98 (2010).
A. Togola and H. Budzinski, Anal. Bioanal. Chem., 388, 627 (2007); https://doi.org/10.1007/s00216-007-1251-x.
F.F. Al-Qaim, S.H. Jusof, M.P. Abdullah, Z.H. Mussa, N.A. Tahrim, W.M.A.W.M. Khalik and M.R. Othman, Malays. J. Anal. Sci., 21, 95 (2017); https://doi.org/10.17576/mjas-2017-2101-11.
W.M.A.W.M. Khalik, M.P. Abdullah, F.K. Baharudin and S.A. Zulkepli, J. Mater. Environ. Sci., 7, 720 (2016).
M. Saraji and B. Farajmand, J. Chromatogr. A, 1314, 24 (2013); https://doi.org/10.1016/j.chroma.2013.09.018.
T. Rönkkö, Master of Science Thesis, University of Helsinki, Helsinki, Finland (2016).
R. Jiang and J. Pawliszyn, Trends Analyt. Chem., 39, 245 (2012); https://doi.org/10.1016/j.trac.2012.07.005.
F.S. Mirnaghi, D. Hein and J. Pawliszyn, Chromatographia, 76, 1215 (2013); https://doi.org/10.1007/s10337-013-2443-5.
S.S. Moghaddam, M.A. Moghaddam and M. Arami, J. Hazard. Mater., 175, 651 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.058.
A.M. Joglekar and A.T. May, Cereal Foods World, 32, 857 (1987).
A.C.V. Neves Junior, A. Melo, C. Pinho, R.C.C. Coneglian, A.G. Soares and I.M.P.L.V.O. Ferreira, J. Chemometr., 28, 716 (2014); https://doi.org/10.1002/cem.2639.
N.A. Zulkipli, S.H. Loh and W.M.A.W.M. Khalik, Res. J. Chem. Environ., 23, 44 (2019).
H. Piri-Moghadam, E. Gionfriddo, A. Rodriguez-Lafuente, J.J. Grandy, H.L. Lord, T. Obal and J. Pawliszyn, Anal. Chim. Acta, 964, 74 (2017); https://doi.org/10.1016/j.aca.2017.02.014.