Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Anticancer Activity of Copper Oxide Nanoparticles Synthesized from Brassia actinophylla Flower Extract
Corresponding Author(s) : V. Sujatha
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
There are many methods to synthesize metal and metal oxide nanoparticles. In this paper, copper oxide nanoparticles have been synthesized by solution combustion method using Brassia actinophylla i.e. Schefflera actinophylla flower extract belongs to Araliaceae family. The importance of solution combustion is one of the easy and simplest methods for the synthesis of metal oxide nanoparticle. The CuO nanoparticles were synthesized at various temperatures and the characterization has been carried out by UV, FTIR, PXRD, SEM, TEM and EDAX analysis. At lower temperature, the peak was not observed but at 400 ºC, the UV peak was observed at 340 nm. The FTIR peaks observed at 1000-500 cm-1 confirms again the presence of CuO nanoparticles. The monoclinic phase and crystalline structure of nanoparticles were revealed by PXRD pattern, by Scherrer′s method the average crystalline sizes were found to be in the range of 15 to 24 nm. The size and the shape of nanoparticles were confirmed by SEM and TEM reports. The SEM images of nanoparticles show spherical in shape and free from agglomeration. TEM analysis reports the nanoparticle sizes ranging from 2 to 20 nm. The percentage of copper (52 %) and oxygen (26 %) elements were recorded in the EDAX analysis. The study of size and stability of nanoparticles were done by zeta potential values. The antibacterial activity of CuO nanoparticles were carried out against Staphylococcus aureus and Escherichia coli bacteria's by agar well diffusion method. The MTT assay was performed in order to check the anticancer activity of CuO nanoparticles against HT-29 colon cancer cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, S.Z. Qiao, Q.H. Hu and G.Q. Lu, Small, 7, 425 (2011); https://doi.org/10.1002/smll.201001402.
- N.A. Luechinger, R.N. Grass, E.K. Athanassiou and W.J. Stark, Chem. Mater., 22, 155 (2010); https://doi.org/10.1021/cm902527n.
- P. Mohanpuria, N.K. Rana and S.K. Yadav, J. Nanopart. Res., 10, 507 (2008); https://doi.org/10.1007/s11051-007-9275-x.
- S. Honary, H. Barabadi and E. Gharaei-Fathabad, J. Nanomater. Biostruct., 10, 999 (2012).
- I. Capek, Adv. Colloid Interface Sci., 110, 49 (2004); https://doi.org/10.1016/j.cis.2004.02.003.
- B.S. Yin, H.Y. Ma, Y. Wang and S. Chen, J. Phys. Chem. B, 107, 8898 (2003); https://doi.org/10.1021/jp0349031.
- S.B. Patil, T.N. Ravishankar, K. Lingaraju, G.K. Raghu and G. Nagaraju, J. Mater. Sci. Mater. Electron., 29, 277 (2018); https://doi.org/10.1007/s10854-017-7914-2.
- V. Helan, J.J. Prince, N.A. Al-Dhabi, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan and M. Jayachandran, Results in Physics, 6, 712 (2016); https://doi.org/10.1016/j.rinp.2016.10.005.
- P. Yugandhar, R. Haribabu and N. Savthramma, 3 Biotech., 5, 1031 (2015); https://doi.org/10.1007/s13205-015-0307-4.
- R. Kalyanaraman, S. Yoo, M.S. Krupashankara, T.S. Sudarshan and R.J. Dowding, Nanostruct. Mater., 10, 1379 (1998); https://doi.org/10.1016/S0965-9773(99)00017-3.
- A. Umer, S. Naveed and N. Ramzan, Nano: Brief Rep. Rev., 7, 1230005 (2012); https://doi.org/10.1142/S1793292012300058.
- S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003.
- J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104.
- S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004); https://doi.org/10.1038/nmat1152.
- B. Ankamwar, M. Chaudhary and M. Sastry, Nano-Metal Chem., 35, 19 (2005); https://doi.org/10.1081/SIM-200047527.
- B.S. Ravikumar, H. Nagabhushana, D.V. Sunitha, S.C. Sharma, B.M. Nagabhushana and C. Shivakumara, J. Alloys Compd., 585, 561 (2014); https://doi.org/10.1016/j.jallcom.2013.09.080.
- S. Yang, C. Wang, L. Chen and S. Chen, Mater. Chem. Phys., 120, 296 (2010); https://doi.org/10.1016/j.matchemphys.2009.11.005.
- P. Podhajecky, B. Klapste, P. Novak, J. Mrha, R. Moshtev, V. Manev and A. Nassalevska, J. Power Sources, 14, 269 (1985); https://doi.org/10.1016/0378-7753(85)80042-2.
- T. Yu, F.C. Cheong and C.H. Sow, Nanotechnology, 15, 1732 (2004); https://doi.org/10.1088/0957-4484/15/12/005.
- S.K. Yip and J.A. Sauls, Phys. Rev. Lett., 69, 2264 (1992); https://doi.org/10.1103/PhysRevLett.69.2264.
- M.S. Tokumoto, V. Briois, C.V. Santilli and S.H. Pulcinelli, J. Sol-Gel Sci. Technol., 26, 547 (2003); https://doi.org/10.1023/A:1020711702332.
- P. Kumar, L.S. Panchakarla, S. Venkataprasad Bhat, U. Maitra, K.S. Subrahmanyam and C.N.R. Rao, Nanotechnology, 21, 385701 (2010); https://doi.org/10.1088/0957-4484/21/38/385701.
- G. Thomas, Nature, 389, 907 (1997); https://doi.org/10.1038/39999.
- C.H. Xu, C.H. Woo and S.Q. Shi, Chem. Phys. Lett., 399, 62 (2004); https://doi.org/10.1016/j.cplett.2004.10.005.
- R. Sankar, R. Dhivya, K.S. Shivashangari and V. Ravikumar, J. Mater. Sci. Mater. Med., 25, 1701 (2014); https://doi.org/10.1007/s10856-014-5193-5.
- R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari and V. Ravikumar, Colloids Surf. B Biointerfaces, 108, 80 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.033.
- S. BarathManiKanth, K. Kalishwaralal, M. Sriram, S.B. Pandian, H. Youn, S.H. Eom and S. Gurunathan, J. Nanobiotechnology, 8, 16 (2010); https://doi.org/10.1186/1477-3155-8-16.
- J. Beasely, Plants of Tropical North Queensland: The Compact Guide, Footloose Publications: Kuranda, Australia, pp. 192 (2006).
- E. Frankel, Nutritional Benefits of Flavnoids, Proceedings of the International Conference of Food Factors: Chemistry and Cancer Prevention, Hamamastu, Japan, December 10-15,(1995).
- H. Wang, J.-Z. Xu, J.-J. Zhu and H.-Y. Chen, J. Cryst. Growth, 244, 88 (2002); https://doi.org/10.1016/S0022-0248(02)01571-3.
- C.K. Xu, Y.K. Liu, G.D. Xu and G.H. Wang, Mater. Res. Bull., 37, 2365 (2002); https://doi.org/10.1016/S0025-5408(02)00848-6.
- Q. Zhang, Y. Li, D. Xu and Z. Gu, J. Mater. Sci. Lett., 20, 925 (2001); https://doi.org/10.1023/A:1010984917974.
- H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie and B. Zou, Nanotechnology, 15, 37 (2004); https://doi.org/10.1088/0957-4484/15/1/007.
- M. Chandrasekhar, H. Nagabhushana, S.C. Sharma, K.H. Sudheer Kumar, N. Dhananjaya, D.V. Sunitha, C. Shivakumara and B.M. Nagabhushana, J. Alloys Compd., 584, 417 (2014); https://doi.org/10.1016/j.jallcom.2013.08.149.
- K. Lingaraju, H.R. Naika, K. Manjunath, G. Nagaraju, D. Suresh and H. Nagabhushana, Acta Metall. Engl. Lett., 28, 1134 (2015); https://doi.org/10.1007/s40195-015-0304-y.
- J. Zhou, S. McClean, A. Thompson, Y. Zhang, C. Shaw, P. Rao and A.J. Bjourson, Peptides, 27, 3077 (2006); https://doi.org/10.1016/j.peptides.2006.08.007.
- L.J. Gong and S.X. Guo, Afr. J. Biotechnol., 8, 731 (2009).
- M.V. Berridge, P.M. Herst and A.S. Tan, Biotechnol. Annu. Rev., 11, 127 (2005); https://doi.org/10.1016/S1387-2656(05)11004-7.
- M. Ilamathi, S. Santhosh and V. Sivaramakrishnan, Curr. Top. Med. Chem., 16, 2453 (2016); https://doi.org/10.2174/1568026616666160212122820.
- D. Das, B.C. Nath, P. Phukon and S.K. Dolui, J. Colloids Surf. B Biointerfaces, 101, 430 (2013); https://doi.org/10.1016/j.colsurfb.2012.07.002.
- D.P. Dubal, G.S. Gund, C.D. Lokhande and R. Holze, Mater. Res. Bull., 48, 923 (2013); https://doi.org/10.1016/j.materresbull.2012.11.081.
- Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S.M. Hosseinpour-Mashkani and F. Tavakoli, J. Cluster Sci., 23, 577 (2012); https://doi.org/10.1007/s10876-012-0477-8.
- H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh and H. Nagabhushana, J. Taibah Univ. Sci., 9, 7 (2015); https://doi.org/10.1016/j.jtusci.2014.04.006.
- P.C. Nagajyothi, P. Muthuraman, T.V.M. Sreekanth, D.H. Kim and J. Shim, Arab. J. Chem., 10, 215 (2017); https://doi.org/10.1016/j.arabjc.2016.01.011.
- S. Bhattacharjee, J. Control. Rel., 235, 337 (2016); https://doi.org/10.1016/j.jconrel.2016.06.017.
- D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Biomed. Pharmacother., 89, 1067 (2017); https://doi.org/10.1016/j.biopha.2017.02.101.
- T.J. Beveridge and R.G. Murray, J. Bacteriol., 141, 876 (1980).
- R.J. Doyle, T.H. Matthews and U.N. Streips, J. Bacteriol., 143, 471 (1980).
References
J. Liu, S.Z. Qiao, Q.H. Hu and G.Q. Lu, Small, 7, 425 (2011); https://doi.org/10.1002/smll.201001402.
N.A. Luechinger, R.N. Grass, E.K. Athanassiou and W.J. Stark, Chem. Mater., 22, 155 (2010); https://doi.org/10.1021/cm902527n.
P. Mohanpuria, N.K. Rana and S.K. Yadav, J. Nanopart. Res., 10, 507 (2008); https://doi.org/10.1007/s11051-007-9275-x.
S. Honary, H. Barabadi and E. Gharaei-Fathabad, J. Nanomater. Biostruct., 10, 999 (2012).
I. Capek, Adv. Colloid Interface Sci., 110, 49 (2004); https://doi.org/10.1016/j.cis.2004.02.003.
B.S. Yin, H.Y. Ma, Y. Wang and S. Chen, J. Phys. Chem. B, 107, 8898 (2003); https://doi.org/10.1021/jp0349031.
S.B. Patil, T.N. Ravishankar, K. Lingaraju, G.K. Raghu and G. Nagaraju, J. Mater. Sci. Mater. Electron., 29, 277 (2018); https://doi.org/10.1007/s10854-017-7914-2.
V. Helan, J.J. Prince, N.A. Al-Dhabi, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan and M. Jayachandran, Results in Physics, 6, 712 (2016); https://doi.org/10.1016/j.rinp.2016.10.005.
P. Yugandhar, R. Haribabu and N. Savthramma, 3 Biotech., 5, 1031 (2015); https://doi.org/10.1007/s13205-015-0307-4.
R. Kalyanaraman, S. Yoo, M.S. Krupashankara, T.S. Sudarshan and R.J. Dowding, Nanostruct. Mater., 10, 1379 (1998); https://doi.org/10.1016/S0965-9773(99)00017-3.
A. Umer, S. Naveed and N. Ramzan, Nano: Brief Rep. Rev., 7, 1230005 (2012); https://doi.org/10.1142/S1793292012300058.
S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003.
J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104.
S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004); https://doi.org/10.1038/nmat1152.
B. Ankamwar, M. Chaudhary and M. Sastry, Nano-Metal Chem., 35, 19 (2005); https://doi.org/10.1081/SIM-200047527.
B.S. Ravikumar, H. Nagabhushana, D.V. Sunitha, S.C. Sharma, B.M. Nagabhushana and C. Shivakumara, J. Alloys Compd., 585, 561 (2014); https://doi.org/10.1016/j.jallcom.2013.09.080.
S. Yang, C. Wang, L. Chen and S. Chen, Mater. Chem. Phys., 120, 296 (2010); https://doi.org/10.1016/j.matchemphys.2009.11.005.
P. Podhajecky, B. Klapste, P. Novak, J. Mrha, R. Moshtev, V. Manev and A. Nassalevska, J. Power Sources, 14, 269 (1985); https://doi.org/10.1016/0378-7753(85)80042-2.
T. Yu, F.C. Cheong and C.H. Sow, Nanotechnology, 15, 1732 (2004); https://doi.org/10.1088/0957-4484/15/12/005.
S.K. Yip and J.A. Sauls, Phys. Rev. Lett., 69, 2264 (1992); https://doi.org/10.1103/PhysRevLett.69.2264.
M.S. Tokumoto, V. Briois, C.V. Santilli and S.H. Pulcinelli, J. Sol-Gel Sci. Technol., 26, 547 (2003); https://doi.org/10.1023/A:1020711702332.
P. Kumar, L.S. Panchakarla, S. Venkataprasad Bhat, U. Maitra, K.S. Subrahmanyam and C.N.R. Rao, Nanotechnology, 21, 385701 (2010); https://doi.org/10.1088/0957-4484/21/38/385701.
G. Thomas, Nature, 389, 907 (1997); https://doi.org/10.1038/39999.
C.H. Xu, C.H. Woo and S.Q. Shi, Chem. Phys. Lett., 399, 62 (2004); https://doi.org/10.1016/j.cplett.2004.10.005.
R. Sankar, R. Dhivya, K.S. Shivashangari and V. Ravikumar, J. Mater. Sci. Mater. Med., 25, 1701 (2014); https://doi.org/10.1007/s10856-014-5193-5.
R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari and V. Ravikumar, Colloids Surf. B Biointerfaces, 108, 80 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.033.
S. BarathManiKanth, K. Kalishwaralal, M. Sriram, S.B. Pandian, H. Youn, S.H. Eom and S. Gurunathan, J. Nanobiotechnology, 8, 16 (2010); https://doi.org/10.1186/1477-3155-8-16.
J. Beasely, Plants of Tropical North Queensland: The Compact Guide, Footloose Publications: Kuranda, Australia, pp. 192 (2006).
E. Frankel, Nutritional Benefits of Flavnoids, Proceedings of the International Conference of Food Factors: Chemistry and Cancer Prevention, Hamamastu, Japan, December 10-15,(1995).
H. Wang, J.-Z. Xu, J.-J. Zhu and H.-Y. Chen, J. Cryst. Growth, 244, 88 (2002); https://doi.org/10.1016/S0022-0248(02)01571-3.
C.K. Xu, Y.K. Liu, G.D. Xu and G.H. Wang, Mater. Res. Bull., 37, 2365 (2002); https://doi.org/10.1016/S0025-5408(02)00848-6.
Q. Zhang, Y. Li, D. Xu and Z. Gu, J. Mater. Sci. Lett., 20, 925 (2001); https://doi.org/10.1023/A:1010984917974.
H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie and B. Zou, Nanotechnology, 15, 37 (2004); https://doi.org/10.1088/0957-4484/15/1/007.
M. Chandrasekhar, H. Nagabhushana, S.C. Sharma, K.H. Sudheer Kumar, N. Dhananjaya, D.V. Sunitha, C. Shivakumara and B.M. Nagabhushana, J. Alloys Compd., 584, 417 (2014); https://doi.org/10.1016/j.jallcom.2013.08.149.
K. Lingaraju, H.R. Naika, K. Manjunath, G. Nagaraju, D. Suresh and H. Nagabhushana, Acta Metall. Engl. Lett., 28, 1134 (2015); https://doi.org/10.1007/s40195-015-0304-y.
J. Zhou, S. McClean, A. Thompson, Y. Zhang, C. Shaw, P. Rao and A.J. Bjourson, Peptides, 27, 3077 (2006); https://doi.org/10.1016/j.peptides.2006.08.007.
L.J. Gong and S.X. Guo, Afr. J. Biotechnol., 8, 731 (2009).
M.V. Berridge, P.M. Herst and A.S. Tan, Biotechnol. Annu. Rev., 11, 127 (2005); https://doi.org/10.1016/S1387-2656(05)11004-7.
M. Ilamathi, S. Santhosh and V. Sivaramakrishnan, Curr. Top. Med. Chem., 16, 2453 (2016); https://doi.org/10.2174/1568026616666160212122820.
D. Das, B.C. Nath, P. Phukon and S.K. Dolui, J. Colloids Surf. B Biointerfaces, 101, 430 (2013); https://doi.org/10.1016/j.colsurfb.2012.07.002.
D.P. Dubal, G.S. Gund, C.D. Lokhande and R. Holze, Mater. Res. Bull., 48, 923 (2013); https://doi.org/10.1016/j.materresbull.2012.11.081.
Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S.M. Hosseinpour-Mashkani and F. Tavakoli, J. Cluster Sci., 23, 577 (2012); https://doi.org/10.1007/s10876-012-0477-8.
H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh and H. Nagabhushana, J. Taibah Univ. Sci., 9, 7 (2015); https://doi.org/10.1016/j.jtusci.2014.04.006.
P.C. Nagajyothi, P. Muthuraman, T.V.M. Sreekanth, D.H. Kim and J. Shim, Arab. J. Chem., 10, 215 (2017); https://doi.org/10.1016/j.arabjc.2016.01.011.
S. Bhattacharjee, J. Control. Rel., 235, 337 (2016); https://doi.org/10.1016/j.jconrel.2016.06.017.
D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Biomed. Pharmacother., 89, 1067 (2017); https://doi.org/10.1016/j.biopha.2017.02.101.
T.J. Beveridge and R.G. Murray, J. Bacteriol., 141, 876 (1980).
R.J. Doyle, T.H. Matthews and U.N. Streips, J. Bacteriol., 143, 471 (1980).