Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effective Utilization of Algae Biomass from Wastewater for Biodiesel Production by Direct Transesterification: A Promising Approach for Sustainable Bioenergy Production
Corresponding Author(s) : P. Nautiyal
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Currently, biodiesel produced from algae is receiving a positive response as a substitute for conventional base diesel. To cope up from the costs of expensive downstream stages in the production of biodiesel from algae, present investigation is conducted using algae growing in wastewater as lipid source for biodiesel production. The in situ transesterification using algae was carried to optimize the effect of reaction parameters on the biodiesel yield. The parameters studied were: temperature (35-75 ºC), algae biomass (wt.) to methanol (vol.) ratio (1:1-1:6), catalyst concentration (25-100 wt. %) and stirring intensity (150-750 rpm). The optimum conditions for maximum biodiesel yield achieved were: catalyst concentration and algae biomass to methanol ratio were 60 % and 1:4, respectively with stirring intensity of 450 rpm at 55 ºC. The gas chromatographic studies and fuel properties of biodiesel also establish its potential to be used as fuel in existing engines in accordance to American and European standards.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Marchetti, V.U. Miguel and A.F. Errazu, Renew. Sustain. Energy Rev., 11, 1300 (2007); https://doi.org/10.1016/j.rser.2005.08.006.
- A. Demirbas, Energy Convers. Manage., 50, 14 (2009); https://doi.org/10.1016/j.enconman.2008.09.001.
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Clean Technol. Environ. Policy, 19, 1667 (2017); https://doi.org/10.1007/s10098-017-1355-8.
- K.T. Tan, K.T. Lee, A.R. Mohamed and S. Bhatia, Renew. Sustain. Energy Rev., 13, 420 (2009); https://doi.org/10.1016/j.rser.2007.10.001.
- S. Taravus, H. Temur and A. Yartasi, Energy Fuels, 23, 4112 (2009); https://doi.org/10.1021/ef900211n.
- J. Huang, Y. Wang, J.B. Qin and A.P. Roskilly, Fuel Process. Technol., 91, 1761 (2010); https://doi.org/10.1016/j.fuproc.2010.07.017.
- S.V. Ghadge and H. Raheman, Bioresour. Technol., 97, 379 (2006); https://doi.org/10.1016/j.biortech.2005.03.014.
- Y. Chisti, Biotechnol. Adv., 25, 294 (2007); https://doi.org/10.1016/j.biotechadv.2007.02.001.
- T.M. Mata, A.A. Martins and N.S. Caetano, Renew. Sustain. Energy Rev., 14, 217 (2010).
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel Process. Technol., 120, 79 (2014); https://doi.org/10.1016/j.fuproc.2013.12.003.
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel, 135, 228 (2014); https://doi.org/10.1016/j.fuel.2014.06.063.
- F. Ma, L.D. Clements and M.A. Hanna, Bioresour. Technol., 69, 289 (1999); https://doi.org/10.1016/S0960-8524(98)00184-9.
- B.D. Wahlen, B.A. Barney and L.C. Seefeldt, Energy Fuels, 22, 4223 (2008); https://doi.org/10.1021/ef800279t.
- D.Y. Leung, X. Wu and M.K.H. Leung, Appl. Energy, 87, 1083 (2010); https://doi.org/10.1016/j.apenergy.2009.10.006.
- H.J. Kim, B.S. Kang, M.J. Kim, Y.M. Park, D.-K. Kim, J.-S. Lee and K.-Y. Lee, Catal. Today, 93-95, 315 (2004); https://doi.org/10.1016/j.cattod.2004.06.007.
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, J. Environ. Manage., 182, 187 (2016); https://doi.org/10.1016/j.jenvman.2016.07.063.
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Environ. Process., 4(S1), 179 (2017); https://doi.org/10.1007/s40710-017-0230-2.
References
J.M. Marchetti, V.U. Miguel and A.F. Errazu, Renew. Sustain. Energy Rev., 11, 1300 (2007); https://doi.org/10.1016/j.rser.2005.08.006.
A. Demirbas, Energy Convers. Manage., 50, 14 (2009); https://doi.org/10.1016/j.enconman.2008.09.001.
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Clean Technol. Environ. Policy, 19, 1667 (2017); https://doi.org/10.1007/s10098-017-1355-8.
K.T. Tan, K.T. Lee, A.R. Mohamed and S. Bhatia, Renew. Sustain. Energy Rev., 13, 420 (2009); https://doi.org/10.1016/j.rser.2007.10.001.
S. Taravus, H. Temur and A. Yartasi, Energy Fuels, 23, 4112 (2009); https://doi.org/10.1021/ef900211n.
J. Huang, Y. Wang, J.B. Qin and A.P. Roskilly, Fuel Process. Technol., 91, 1761 (2010); https://doi.org/10.1016/j.fuproc.2010.07.017.
S.V. Ghadge and H. Raheman, Bioresour. Technol., 97, 379 (2006); https://doi.org/10.1016/j.biortech.2005.03.014.
Y. Chisti, Biotechnol. Adv., 25, 294 (2007); https://doi.org/10.1016/j.biotechadv.2007.02.001.
T.M. Mata, A.A. Martins and N.S. Caetano, Renew. Sustain. Energy Rev., 14, 217 (2010).
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel Process. Technol., 120, 79 (2014); https://doi.org/10.1016/j.fuproc.2013.12.003.
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel, 135, 228 (2014); https://doi.org/10.1016/j.fuel.2014.06.063.
F. Ma, L.D. Clements and M.A. Hanna, Bioresour. Technol., 69, 289 (1999); https://doi.org/10.1016/S0960-8524(98)00184-9.
B.D. Wahlen, B.A. Barney and L.C. Seefeldt, Energy Fuels, 22, 4223 (2008); https://doi.org/10.1021/ef800279t.
D.Y. Leung, X. Wu and M.K.H. Leung, Appl. Energy, 87, 1083 (2010); https://doi.org/10.1016/j.apenergy.2009.10.006.
H.J. Kim, B.S. Kang, M.J. Kim, Y.M. Park, D.-K. Kim, J.-S. Lee and K.-Y. Lee, Catal. Today, 93-95, 315 (2004); https://doi.org/10.1016/j.cattod.2004.06.007.
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, J. Environ. Manage., 182, 187 (2016); https://doi.org/10.1016/j.jenvman.2016.07.063.
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Environ. Process., 4(S1), 179 (2017); https://doi.org/10.1007/s40710-017-0230-2.