Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Plant Mediated Green Synthesis, Catalytic Activity and Antibacterial Assay of Silver Nanoparticles
Corresponding Author(s) : T. Shobha Rani
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Plant mediated green synthesis of silver nanoparticles (AgNPs) was carried out with the plant extract of Vitex negundo Linn., a simple method without using harmful chemicals. Herein, a root bark extract is used as reducing and capping agent for synthesizing AgNPs from silver nitrate solution. The characterization of AgNPs were obtained by UV-visible spectrophotometer, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. The results were confirmed the presence of silver nanoparticles with UV-visible absorption peak at around 433-443 nm and its crystalline nature by XRD analysis. The FTIR spectrum confirmed that the synthesized AgNPs are stabilized and protected by various functional groups of biomolecules in extract. The SEM morphology showed the triangular or spherical shape of AgNPs with the size in the range of 80-100 nm and EDS confirmed the presence of elemental silver in the sample. The catalytic activity of AgNPs was investigated in the synthesis of 5-substituted 1H-tetrazole. Furthermore, antibacterial profile showed that biopotent AgNPs exhibited moderate to good antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Vilchis-Nestor, V. Sánchez-Mendieta, M.A. Camacho-López, R.M. Gómez- Espinosa, A. Camacho-López and J.A. Arenas-Alatorre, Mater. Lett., 62, 3103 (2008); https://doi.org/10.1016/j.matlet.2008.01.138.
- M.M. Kumari, J. Jacob and D. Philip, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 137, 185 (2015); https://doi.org/ 10.1016/j.saa.2014.08.079.
- C. Larue, H. Castillo-Michel, S. Sobanska, L. Cecillon, S. Bureau, V. Barthes, L. Ouerdane, M. Carriere and G. Sarret, J. Hazard. Mater., 264, 98 (2014); https://doi.org/10.1016/j.jhazmat.2013.10.053.
- S. Prabhu and E.K. Poulose, Int. Nano Lett., 2, 32 (2012); https://doi.org/10.1186/2228-5326-2-32.
- U.K. Parashar, P.S. Saxena and A. Srivastava, Dig. J. Nanomater. Biostruct., 4, 159 (2009).
- K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah and G. Sangiliyandi, Mater. Lett., 62, 4411 (2008); https://doi.org/10.1016/j.matlet.2008.06.051.
- K. Vijayaraghavan, S.K. Nalini, N.U. Prakash and D. Madhankumar, Mater. Lett., 75, 33 (2012); https://doi.org/10.1016/j.matlet.2012.01.083.
- A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry, Colloids Surf. B: Biointerfaces, 28, 313 (2003); https://doi.org/10.1016/S0927-7765(02)00174-1.
- A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar and A.-A. Nohi, Process Biochem., 42, 919 (2007); https://doi.org/10.1016/j.procbio.2007.02.005.
- C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan and N. Mohan, Colloids Surf. B: Biointerfaces, 76, 50 (2010); https://doi.org/10.1016/j.colsurfb.2009.10.008.
- O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003.
- P. Logeswari, S. Silambarasan and J. Abraham, Sci. Iran, 20, 1049 (2013); https://doi.org/10.1016/j.scient.2013.05.016.
- M.N. Nadagouda, N. Iyanna, J. Lalley, C. Han, D.D. Dionysiou and R.S. Varma, ACS Sustain. Chem. Eng., 2, 1717 (2014); https://doi.org/10.1021/sc500237k.
- P.H.M. Hoet, I. Brüske-Hohlfeld and O.V. Salata, J. Nanobiotechnol., 2, 12 (2004); https://doi.org/10.1186/1477-3155-2-12.
- D.A. Selvan, D. Mahendiran, R. Senthil Kumar and A.K. Rahiman, J. Photochem. Photobiol. B: Biol., 180, 243 (2018); https://doi.org/10.1016/j.jphotobiol.2018.02.014.
- C. Dipankar and S. Murugan, Colloids Surf. B: Biointerfaces, 98, 112 (2012); https://doi.org/10.1016/j.colsurfb.2012.04.006.
- P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j.
- S. Iravani, Green Chem. 13, 2638 (2011); https://doi.org/10.1039/C1GC15386B.
- A.K. Jha, K. Prasad, K. Prasad and A. Kulkarni, Colloids Surf. B: Biointerfaces, 73, 219 (2009); https://doi.org/10.1016/j.colsurfb.2009.05.018.
- H.B. Broughton and I.A. Watson, J. Mol. Graphics Modell., 23, 51 (2004); https://doi.org/10.1016/j.jmgm.2004.03.016.
- J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous Catalysis, VCH: Weinheim (1997).
- R.N. Butler, eds.: A.R. Katritzky, C.W. Rees and E.F.V. Scriven, Comprehensive Heterocyclic Chemistry, Pergamon, Oxford, vol. 4 (1996).
- R.J. Herr, Bioorg. Med. Chem. 10, 3379 (2002); https://doi.org/10.1016/S0968-0896(02)00239-0.
- L.S. Li, J. Hu, W. Yang, A.P. Alivisatos, Nano Lett., 7, 349 (2001); https://doi.org/10.1021/nl015559r.
- R. Kaur, J. Bariwal, L.G. Voskressensky and E.V. Van der Eycken, Chem Heterocycl. Comp., 54, 241 (2018); https://doi.org/10.1007/s10593-018-2259-1.
- M. Reddeppa, R.C. Krishna Reddy, Y.P. Raj and T.S. Rani, Asian J. Chem., 31, 622 (2019); https://doi.org/10.14233/ajchem.2019.21750.
- G. Keerti and K. Padma, Int. J. Drug Dev. Res., 4, 192 (2012).
- P.M. Subramanian and G.S. Misra, J. Nat. Prod., 42, 540 (1979); https://doi.org/10.1021/np50005a019.
- V.R. Tandon, Indian J. Nat. Prod. Resour., 4, 162 (2005); http://hdl.handle.net/123456789/8085.
- C. Perez, M. Paul and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
- I. Ahmad and A.Z. Beg, J. Ethnopharmacol., 74, 113 (2001); https://doi.org/10.1016/S0378-8741(00)00335-4.
- P. Mani, C. Sharma, S. Kumar, S.K. Awasthi, J. Mol. Catal. A: Chem., 392, 150 (2014); http://dx.doi.org/10.1016/j.molcata.2014.05.008.
References
A.R. Vilchis-Nestor, V. Sánchez-Mendieta, M.A. Camacho-López, R.M. Gómez- Espinosa, A. Camacho-López and J.A. Arenas-Alatorre, Mater. Lett., 62, 3103 (2008); https://doi.org/10.1016/j.matlet.2008.01.138.
M.M. Kumari, J. Jacob and D. Philip, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 137, 185 (2015); https://doi.org/ 10.1016/j.saa.2014.08.079.
C. Larue, H. Castillo-Michel, S. Sobanska, L. Cecillon, S. Bureau, V. Barthes, L. Ouerdane, M. Carriere and G. Sarret, J. Hazard. Mater., 264, 98 (2014); https://doi.org/10.1016/j.jhazmat.2013.10.053.
S. Prabhu and E.K. Poulose, Int. Nano Lett., 2, 32 (2012); https://doi.org/10.1186/2228-5326-2-32.
U.K. Parashar, P.S. Saxena and A. Srivastava, Dig. J. Nanomater. Biostruct., 4, 159 (2009).
K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah and G. Sangiliyandi, Mater. Lett., 62, 4411 (2008); https://doi.org/10.1016/j.matlet.2008.06.051.
K. Vijayaraghavan, S.K. Nalini, N.U. Prakash and D. Madhankumar, Mater. Lett., 75, 33 (2012); https://doi.org/10.1016/j.matlet.2012.01.083.
A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry, Colloids Surf. B: Biointerfaces, 28, 313 (2003); https://doi.org/10.1016/S0927-7765(02)00174-1.
A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar and A.-A. Nohi, Process Biochem., 42, 919 (2007); https://doi.org/10.1016/j.procbio.2007.02.005.
C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan and N. Mohan, Colloids Surf. B: Biointerfaces, 76, 50 (2010); https://doi.org/10.1016/j.colsurfb.2009.10.008.
O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003.
P. Logeswari, S. Silambarasan and J. Abraham, Sci. Iran, 20, 1049 (2013); https://doi.org/10.1016/j.scient.2013.05.016.
M.N. Nadagouda, N. Iyanna, J. Lalley, C. Han, D.D. Dionysiou and R.S. Varma, ACS Sustain. Chem. Eng., 2, 1717 (2014); https://doi.org/10.1021/sc500237k.
P.H.M. Hoet, I. Brüske-Hohlfeld and O.V. Salata, J. Nanobiotechnol., 2, 12 (2004); https://doi.org/10.1186/1477-3155-2-12.
D.A. Selvan, D. Mahendiran, R. Senthil Kumar and A.K. Rahiman, J. Photochem. Photobiol. B: Biol., 180, 243 (2018); https://doi.org/10.1016/j.jphotobiol.2018.02.014.
C. Dipankar and S. Murugan, Colloids Surf. B: Biointerfaces, 98, 112 (2012); https://doi.org/10.1016/j.colsurfb.2012.04.006.
P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j.
S. Iravani, Green Chem. 13, 2638 (2011); https://doi.org/10.1039/C1GC15386B.
A.K. Jha, K. Prasad, K. Prasad and A. Kulkarni, Colloids Surf. B: Biointerfaces, 73, 219 (2009); https://doi.org/10.1016/j.colsurfb.2009.05.018.
H.B. Broughton and I.A. Watson, J. Mol. Graphics Modell., 23, 51 (2004); https://doi.org/10.1016/j.jmgm.2004.03.016.
J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous Catalysis, VCH: Weinheim (1997).
R.N. Butler, eds.: A.R. Katritzky, C.W. Rees and E.F.V. Scriven, Comprehensive Heterocyclic Chemistry, Pergamon, Oxford, vol. 4 (1996).
R.J. Herr, Bioorg. Med. Chem. 10, 3379 (2002); https://doi.org/10.1016/S0968-0896(02)00239-0.
L.S. Li, J. Hu, W. Yang, A.P. Alivisatos, Nano Lett., 7, 349 (2001); https://doi.org/10.1021/nl015559r.
R. Kaur, J. Bariwal, L.G. Voskressensky and E.V. Van der Eycken, Chem Heterocycl. Comp., 54, 241 (2018); https://doi.org/10.1007/s10593-018-2259-1.
M. Reddeppa, R.C. Krishna Reddy, Y.P. Raj and T.S. Rani, Asian J. Chem., 31, 622 (2019); https://doi.org/10.14233/ajchem.2019.21750.
G. Keerti and K. Padma, Int. J. Drug Dev. Res., 4, 192 (2012).
P.M. Subramanian and G.S. Misra, J. Nat. Prod., 42, 540 (1979); https://doi.org/10.1021/np50005a019.
V.R. Tandon, Indian J. Nat. Prod. Resour., 4, 162 (2005); http://hdl.handle.net/123456789/8085.
C. Perez, M. Paul and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
I. Ahmad and A.Z. Beg, J. Ethnopharmacol., 74, 113 (2001); https://doi.org/10.1016/S0378-8741(00)00335-4.
P. Mani, C. Sharma, S. Kumar, S.K. Awasthi, J. Mol. Catal. A: Chem., 392, 150 (2014); http://dx.doi.org/10.1016/j.molcata.2014.05.008.