Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Docking, Synthesis and Biological Evaluation of Novel Diketoquinoline Analogues as HIV-1 Integrase Inhibitor
Corresponding Author(s) : Avinash V. Patil
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
A series of novel diketoquinoline acid derivatives as potential anti-HIV-1 Integrase inhibitors were docked, synthesized and characterized by IR, NMR , CHN and MS spectral analysis. Many compounds were identified and docked in integrase pocket. The target diketoquinolines were prepared from substituted oxoquinoline-3-carboxylate. In vitro biological evaluation revealed that some of the titled compounds exhibited moderate to good anti-HIV-1 Integrase inhibitory activity in comparison with the reference drugs i.e. raltegravir and nevirapine. The cytotoxicity of most of testing compounds on C8166 were very low, the CC50 value of them were higher than 200 μM, except the few compounds. Compounds 1-5 showed weak anti-HIV-1 activity, its therapeutic index was 457, 531, 583, 869 and 909 respectively. As a positive control drug, Nevirapine has the best anti-HIV-1 activity (EC50 = 0.015-0.016 μM) in vitro and the CC50 of was higher than 200 μM, its therapeutic index was higher 12418.50. In integrase assay compound 6 and 7 showed EC50 value 0.08 μM as compared with standard drug raltegravir.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Hajimahdi and A. Zarghi, Iran. J. Pharm. Res., 15, 595 (2016).
- Y. Mehellou and E. De Clercq, J. Med. Chem., 53, 521 (2010); https://doi.org/10.1021/jm900492g.
- O. Tabarrini, S. Massari and V. Cecchetti, Future Med. Chem., 2, 1161 (2010); https://doi.org/10.4155/fmc.10.208.
- F. Clavel and A.J. Hance, Engl. J. Med., 350, 1023 (2004); https://doi.org/10.1056/NEJMra025195.
- N.F. Crum, R.H. Riffenburgh, S. Wegner, B.K. Agan, S.A. Tasker, K.M. Spooner, A.W. Armstrong, S. Fraser and M.R. Wallace, J. Acquir. Immune Defic. Syndr., 41, 194 (2006); https://doi.org/10.1097/01.qai.0000179459.31562.16.
- M.F. Dybul, A.S. Bartlett, J.G. Kaplan and A.K. Pau, Ann. Intern. Med., 137, 381 (2002); https://doi.org/10.7326/0003-4819-137-5_Part_2-200209031-00001.
- A. Engelman and P. Cherepanov, Nat. Rev. Microbiol., 10, 279 (2012); https://doi.org/10.1038/nrmicro2747.
- Y. Hwang, D. Rhodes and F. Bushman, Nucleic Acids Res., 28, 4884 (2000); https://doi.org/10.1093/nar/28.24.4884.
- R. Pauwels, J. Balzarini, M. Baba, R. Snoeck, D. Schols, P. Herdewijn, J. Desmyter and E. De Clercq, J. Virol. Methods, 20, 309 (1988); https://doi.org/10.1016/0166-0934(88)90134-6.
- F. Christ, K. Busschots, J. Hendrix, M. McNeely, Y. Engelborghs and Z. Debyser, ed.: N. Neamati, Assays for Evaluation of HIV1 Integrase Enzymatic Activity, DNA Binding and Cofactor Interaction, John Wiley & Sons, Inc. (2011).
- Z. Debyser, P. Cherepanov, W. Pluymers and E. De Clercq, ed.: C.H. Schein, Assays for the Evaluation of HIV-1 Integrase Inhibitors, In: Methods in Molecular Biology, Nuclease Methods and Protocols, Humana Press, Totowa, N.J., p. 139, 160 (2001).
- A.L. Hopkins, J. Ren, J. Milton, R.J. Hazen, J.H. Chan, D.I. Stuart and D.K. Stammers, J. Med. Chem., 47, 5912 (2004); https://doi.org/10.1021/jm040071z.
- G.A. Freeman, C.W. Andrews, A.L. Hopkins, G.S. Lowell, L.T. Schaller, J.R. Cowan, S.S. Gonzales, G.W. Koszalka, R.J. Hazen, L.R. Boone, R.G. Ferris, K.L. Creech, G.B. Roberts, S.A. Short, K. Weaver, D.J. Reynolds, J. Milton, J. Ren, D.I. Stuart, D.K. Stammers and J.H. Chan, J. Med. Chem., 47, 5923 (2004); https://doi.org/10.1021/jm040072r.
- M. Sato, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita, Y. Ito, H. Kawakami, Y. Matsuzaki, W. Watanabe, K. Yamataka, S. Ikeda, E. Kodama, M. Matsuoka and H. Shinkai, J. Med. Chem., 49, 1506 (2006); https://doi.org/10.1021/jm0600139.
- Z. Luo, C. Zeng, F. Wang, H. He, C. Wang, H. Du and L. Hu, Chem. Res. Chin. Univ., 25, 841 (2009).
- N. Ahmed, K.G. Brahmbhatt, S. Sabde, D. Mitra, I.P. Singh and K.K. Bhutani, Bioorg. Med. Chem., 18, 2872 (2010); https://doi.org/10.1016/j.bmc.2010.03.015.
- D. Sriram, T.R. Bal and P. Yogeeswari, Bioorg. Med. Chem., 12, 5865 (2004); https://doi.org/10.1016/j.bmc.2004.08.028.
- S. Chen, R. Chen, M. He, R. Pang, Z. Tan and M. Yang, Bioorg. Med. Chem., 17, 1948 (2009); https://doi.org/10.1016/j.bmc.2009.01.038.
- L. Sancineto, N. Iraci, M.L. Barreca, S. Massari, G. Manfroni, G. Corazza, V. Cecchetti, A. Marcello, D. Daelemans, C. Pannecouque and O. Tabarrini, Bioorg. Med. Chem., 22, 4658 (2014); https://doi.org/10.1016/j.bmc.2014.07.018.
- C. Bénard, F. Zouhiri, M. Normand-Bayle, M. Danet, D. Desmaële, H. Leh, J.-F. Mouscadet, G. Mbemba, C.-M. Thomas, S. Bonnenfant, M. Le Bret and J. d’Angelo, Bioorg. Med. Chem. Lett., 14, 2473 (2004); https://doi.org/10.1016/j.bmcl.2004.03.005.
- R. Di Santo, R. Costi, A. Roux, M. Artico, A. Lavecchia, L. Marinelli, E. Novellino, L. Palmisano, M. Andreotti, R. Amici, C.M. Galluzzo, L. Nencioni, A.T. Palamara, Y. Pommier and C. Marchand, J. Med. Chem., 49, 1939 (2006); https://doi.org/10.1021/jm0511583.
- M. Billamboz, F. Bailly, M.L. Barreca, L. De Luca, J.-F. Mouscadet, C. Calmels, M.-L. Andréola, M. Witvrouw, F. Christ, Z. Debyser and P. Cotelle, J. Med. Chem., 51, 7717 (2008); https://doi.org/10.1021/jm8007085.
- M. Billamboz, F. Bailly, C. Lion, C. Calmels, M.-L. Andréola, M. Witvrouw, F. Christ, Z. Debyser, L. De Luca, A. Chimirri and P. Cotelle, Eur. J. Med. Chem., 46, 535 (2011); https://doi.org/10.1016/j.ejmech.2010.11.033.
- S. Ghanei, H. Eshghi and J. Lari, J. Chem. Pharm. Res., 7, 428 (2015)
References
Z. Hajimahdi and A. Zarghi, Iran. J. Pharm. Res., 15, 595 (2016).
Y. Mehellou and E. De Clercq, J. Med. Chem., 53, 521 (2010); https://doi.org/10.1021/jm900492g.
O. Tabarrini, S. Massari and V. Cecchetti, Future Med. Chem., 2, 1161 (2010); https://doi.org/10.4155/fmc.10.208.
F. Clavel and A.J. Hance, Engl. J. Med., 350, 1023 (2004); https://doi.org/10.1056/NEJMra025195.
N.F. Crum, R.H. Riffenburgh, S. Wegner, B.K. Agan, S.A. Tasker, K.M. Spooner, A.W. Armstrong, S. Fraser and M.R. Wallace, J. Acquir. Immune Defic. Syndr., 41, 194 (2006); https://doi.org/10.1097/01.qai.0000179459.31562.16.
M.F. Dybul, A.S. Bartlett, J.G. Kaplan and A.K. Pau, Ann. Intern. Med., 137, 381 (2002); https://doi.org/10.7326/0003-4819-137-5_Part_2-200209031-00001.
A. Engelman and P. Cherepanov, Nat. Rev. Microbiol., 10, 279 (2012); https://doi.org/10.1038/nrmicro2747.
Y. Hwang, D. Rhodes and F. Bushman, Nucleic Acids Res., 28, 4884 (2000); https://doi.org/10.1093/nar/28.24.4884.
R. Pauwels, J. Balzarini, M. Baba, R. Snoeck, D. Schols, P. Herdewijn, J. Desmyter and E. De Clercq, J. Virol. Methods, 20, 309 (1988); https://doi.org/10.1016/0166-0934(88)90134-6.
F. Christ, K. Busschots, J. Hendrix, M. McNeely, Y. Engelborghs and Z. Debyser, ed.: N. Neamati, Assays for Evaluation of HIV1 Integrase Enzymatic Activity, DNA Binding and Cofactor Interaction, John Wiley & Sons, Inc. (2011).
Z. Debyser, P. Cherepanov, W. Pluymers and E. De Clercq, ed.: C.H. Schein, Assays for the Evaluation of HIV-1 Integrase Inhibitors, In: Methods in Molecular Biology, Nuclease Methods and Protocols, Humana Press, Totowa, N.J., p. 139, 160 (2001).
A.L. Hopkins, J. Ren, J. Milton, R.J. Hazen, J.H. Chan, D.I. Stuart and D.K. Stammers, J. Med. Chem., 47, 5912 (2004); https://doi.org/10.1021/jm040071z.
G.A. Freeman, C.W. Andrews, A.L. Hopkins, G.S. Lowell, L.T. Schaller, J.R. Cowan, S.S. Gonzales, G.W. Koszalka, R.J. Hazen, L.R. Boone, R.G. Ferris, K.L. Creech, G.B. Roberts, S.A. Short, K. Weaver, D.J. Reynolds, J. Milton, J. Ren, D.I. Stuart, D.K. Stammers and J.H. Chan, J. Med. Chem., 47, 5923 (2004); https://doi.org/10.1021/jm040072r.
M. Sato, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita, Y. Ito, H. Kawakami, Y. Matsuzaki, W. Watanabe, K. Yamataka, S. Ikeda, E. Kodama, M. Matsuoka and H. Shinkai, J. Med. Chem., 49, 1506 (2006); https://doi.org/10.1021/jm0600139.
Z. Luo, C. Zeng, F. Wang, H. He, C. Wang, H. Du and L. Hu, Chem. Res. Chin. Univ., 25, 841 (2009).
N. Ahmed, K.G. Brahmbhatt, S. Sabde, D. Mitra, I.P. Singh and K.K. Bhutani, Bioorg. Med. Chem., 18, 2872 (2010); https://doi.org/10.1016/j.bmc.2010.03.015.
D. Sriram, T.R. Bal and P. Yogeeswari, Bioorg. Med. Chem., 12, 5865 (2004); https://doi.org/10.1016/j.bmc.2004.08.028.
S. Chen, R. Chen, M. He, R. Pang, Z. Tan and M. Yang, Bioorg. Med. Chem., 17, 1948 (2009); https://doi.org/10.1016/j.bmc.2009.01.038.
L. Sancineto, N. Iraci, M.L. Barreca, S. Massari, G. Manfroni, G. Corazza, V. Cecchetti, A. Marcello, D. Daelemans, C. Pannecouque and O. Tabarrini, Bioorg. Med. Chem., 22, 4658 (2014); https://doi.org/10.1016/j.bmc.2014.07.018.
C. Bénard, F. Zouhiri, M. Normand-Bayle, M. Danet, D. Desmaële, H. Leh, J.-F. Mouscadet, G. Mbemba, C.-M. Thomas, S. Bonnenfant, M. Le Bret and J. d’Angelo, Bioorg. Med. Chem. Lett., 14, 2473 (2004); https://doi.org/10.1016/j.bmcl.2004.03.005.
R. Di Santo, R. Costi, A. Roux, M. Artico, A. Lavecchia, L. Marinelli, E. Novellino, L. Palmisano, M. Andreotti, R. Amici, C.M. Galluzzo, L. Nencioni, A.T. Palamara, Y. Pommier and C. Marchand, J. Med. Chem., 49, 1939 (2006); https://doi.org/10.1021/jm0511583.
M. Billamboz, F. Bailly, M.L. Barreca, L. De Luca, J.-F. Mouscadet, C. Calmels, M.-L. Andréola, M. Witvrouw, F. Christ, Z. Debyser and P. Cotelle, J. Med. Chem., 51, 7717 (2008); https://doi.org/10.1021/jm8007085.
M. Billamboz, F. Bailly, C. Lion, C. Calmels, M.-L. Andréola, M. Witvrouw, F. Christ, Z. Debyser, L. De Luca, A. Chimirri and P. Cotelle, Eur. J. Med. Chem., 46, 535 (2011); https://doi.org/10.1016/j.ejmech.2010.11.033.
S. Ghanei, H. Eshghi and J. Lari, J. Chem. Pharm. Res., 7, 428 (2015)