Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimicrobial Activities of Copper(II) Complexes of Schiff Base Ligand 2-[(3′-N-salicylidinephenyl)benzimidazole]
Corresponding Author(s) : B. Roopashree
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
CuX2·6H2O (X = Cl–, Br– or ClO4–) reacted with a Schiff base ligand 2-[(3′-N-salicylidinephenyl)benzimidazole] in 1:2 mole ratio in methanol to yield brown colored complexes of types [CuCl2L]2, [CuBr1.5L1.5]2Br and [Cu(OClO3)L2]2(ClO4)2·4H2O. The complexes were characterized by analytical and spectroscopic studies such as elemental analysis, conductivity and magnetic moment measurements, thermogravimetric analysis, IR, far-IR, electronic, ESR and mass spectral studies. IR spectral studies suggested the coordination of ligand to the central metal atom via tertiary nitrogen of benzimidazole and nitrogen of azomethine group. Based on these studies, binuclear structure was proposed for all the copper complexes. The ligand and its copper(II) complexes were screened for antibacterial and antifungal activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Sakai, T. Hamada, N. Awata and J. Watanabe, J. Pharmacobiodyn., 12, 530 (1989); https://doi.org/10.1248/bpb1978.12.530.
- A.A. Spasov, I.N. Yozhitsa, L.I. Bugaeva and V.A. Anisimova, Pharm. Chem. J., 33, 232 (1999); https://doi.org/10.1007/BF02510042.
- R.A. Bucknall and S.B. Carter, Nature, 213, 1099 (1967); https://doi.org/10.1038/2131099a0.
- F. Gumus, O. Algul, G. Eren, H. Eroglu, N. Diril, S. Gür and A. Özkul, Eur. J. Med. Chem., 38, 473 (2003); https://doi.org/10.1016/S0223-5234(03)00058-8.
- M. Gökçe, S. Utku, S. Gür, A. Özkul and F. Gümüs, Eur. J. Med. Chem., 40, 135 (2005); https://doi.org/10.1016/j.ejmech.2004.09.017.
- N. Bharti, M.T. Shailendra, M.T. Gonzalez Garza, D.E. Cruz-Vega, J. Castro-Garza, K. Saleem, F. Naqvi, M.R. Maurya and A. Azam, Bioorg. Med. Chem. Lett., 12, 869 (2002); https://doi.org/10.1016/S0960-894X(02)00034-3.
- Y. Elerman, M. Kabak and A. Elmali, Z. Natruforsch., 57, 651 (2002); https://doi.org/10.1515/znb-2002-0610.
- N. Chantarasiri, V. Ruangpornvisuti, N. Muangsin, T. Mananunsap, H. Detsen, C. Batiya and N. Chaichit, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 157 (2005); https://doi.org/10.1016/j.saa.2004.03.015.
- N. Chantarasiri, V. Ruangpornvisuti, N. Muangsin, T. Mananunsap, H. Detsen, C. Batiya and N. Chaichit, J. Mol. Struct., 701, 93 (2004); https://doi.org/10.1016/j.molstruc.2004.05.015.
- A.A. Soliman and G.G. Mohamed, Thermochim. Acta, 421, 151 (2004); https://doi.org/10.1016/j.tca.2004.03.010.
- J. Kaizer, Z. Zsigmond, I. Ganszky, G. Speier, M. Giorgi and M. Réglier, Inorg. Chem., 46, 4660 (2007); https://doi.org/10.1021/ic062309a.
- E. Tas, I. Ucar, V.T. Kasumov, A. Kilic and A. Bulut, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 463 (2007); https://doi.org/10.1016/j.saa.2006.11.052.
- E. Tas, V. Kasumov, O. Sahin and M. Özdemir, Transition Met. Chem., 27, 442 (2002); https://doi.org/10.1023/A:1015011517647.
- J. Cui and M. Zhang, J. Chem. Res., 34, 41 (2010); https://doi.org/10.3184/030823410X12628736648105.
- M. Ulusoy, O. Sahin, O. Büyükgüngör and B. Çetinkaya, J. Organomet. Chem., 693, 1895 (2008); https://doi.org/10.1016/j.jorganchem.2008.02.017.
- N. Bharti, M.R. Maurya, F. Naqvi and A. Azam, Bioorg. Med. Chem. Lett., 10, 2243 (2000); https://doi.org/10.1016/S0960-894X(00)00446-7.
- G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press: Oxford, vol. 5, p. 775 (1987).
- K.D. Karlin and J. Zubieta, Copper Coordination Chemistry, Biochemical and Inorganic perspective, Adenine Press, Guilderland: New York (1983-1986).
- J. Gaazo, I.B. Bersuker, J. Garaj, M. Kabesova, H. Langfelderova, J. Kojout, M. Melnik, M. Serator and F. Valach, Coord. Chem. Rev., 19, 253 (1976); https://doi.org/10.1016/S0010-8545(00)80317-3.
- M. Palaniandavar, R.J. Butcher and A.W. Addison, Inorg. Chem., 35, 467 (1996); https://doi.org/10.1021/ic941396g.
- A. Benzekri, P. Dubourdeaux, J.M. Latour, P. Rey and J. Laugier, J. Chem. Soc., Dalton Trans., 3359 (1991); https://doi.org/10.1039/dt9910003359.
- J.D. Crane and D.E. Fenton, Polyhedron, 10, 1809 (1991); https://doi.org/10.1016/S0277-5387(00)83804-8.
- H.P. Berends and D.W. Stephan, Inorg. Chim. Acta, 99, L53 (1985); https://doi.org/10.1016/S0020-1693(00)87956-6.
- J.D. Crane, R. Hughes and E. Sinn, Inorg. Chim. Acta, 237, 181 (1995); https://doi.org/10.1016/0020-1693(95)04653-Q.
- V. Mckee, J.V. Dagdigian, R. Bau and C.A. Reed, J. Am. Chem. Soc., 103, 7000 (1981); https://doi.org/10.1021/ja00413a054.
- H.J. Hoorn, P. de Joode, W.L. Driessen and J. Reedijk, React. Funct. Polym., 27, 223 (1995); https://doi.org/10.1016/1381-5148(95)96870-G.
- P.M. van Berkel, D.J. Dijkstra, W.L. Driessen, J. Reedijk and D.C. Sherrington, React. Funct. Polym., 28, 39 (1995); https://doi.org/10.1016/1381-5148(95)00078-2.
- D.D. Perrin, Armarego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press Pvt Ltd: Oxford, edn 1 (1966).
- B. Roopashree, V. Gayathri and H. Mukund, J. Coord. Chem., 65, 1354 (2012); https://doi.org/10.1080/00958972.2012.673123.
- G.R. Suman, G. Bubbly, S.B. Gudennavar, S. Muthu, B. Roopashree, V. Gayatri and N.M. Nanje Gowda, J. Mol. Struct., 1139, 247 (2017); https://doi.org/10.1016/j.molstruc.2017.03.043.
- W.I. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- G. Mohamed, S.A. Salam, S. Oumar, U. Russo and V. Maurizio, Polyhedron, 14, 655 (1995); https://doi.org/10.1016/0277-5387(94)00295-P.
- G. Bombieri, E. Benetollo, A. Polo, L. De Cola, D.L. Smailes and L.M. Vallarino, Inorg. Chem., 25, 1127 (1986); https://doi.org/10.1021/ic00228a014.
- L. De Cola, D.L. Smailes and L.M. Vallarino, Inorg. Chem., 25, 1729 (1986); https://doi.org/10.1021/ic00230a042.
- M.P. Ngwenya, D. Chen, A.E. Martell and J. Reibenspies, Inorg. Chem., 30, 2732 (1991); https://doi.org/10.1021/ic00013a006.
- W. Coleman and L.T. Taylor, Inorg. Chem., 10, 2195 (1971); https://doi.org/10.1021/ic50104a021.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York, edn 4 (1986).
- N.M.N. Gowda, S.B. Naikar and G.K.N. Reddy, Adv. Inorg. Chem. Radiochem., 28, 255 (1984); https://doi.org/10.1016/S0898-8838(08)60210-X.
- A. Bax and M.F. Summers, J. Am. Chem. Soc., 108, 2093 (1986); https://doi.org/10.1021/ja00268a061.
- W. Willker, D. Leibfritz, R. Kerssebaum and W. Bermel, Magn. Reson. Chem., 31, 287 (1993); https://doi.org/10.1002/mrc.1260310315.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: New York (1968).
- A. Piguet, B. Bocquet, E. Muller and A.F. Williams, Helv. Chim. Acta, 72, 323 (1989); https://doi.org/10.1002/hlca.19890720218.
- R.M. Silverstein, G.C. Bassler and T.C. Morril, Spectroscopic Identification of Organic Compounds, Wiley: Singapore, edn 4 (1981).
- R. Nagar, Inorg. Biochem., 40, 349 (1990); https://doi.org/10.1016/0162-0134(90)80069-A.
- Y. Anjaneyulu and R.P. Rao, Synth. React. Inorg. Met.-Org. Chem., 26, 257 (1986); https://doi.org/10.1080/00945718608057530.
References
T. Sakai, T. Hamada, N. Awata and J. Watanabe, J. Pharmacobiodyn., 12, 530 (1989); https://doi.org/10.1248/bpb1978.12.530.
A.A. Spasov, I.N. Yozhitsa, L.I. Bugaeva and V.A. Anisimova, Pharm. Chem. J., 33, 232 (1999); https://doi.org/10.1007/BF02510042.
R.A. Bucknall and S.B. Carter, Nature, 213, 1099 (1967); https://doi.org/10.1038/2131099a0.
F. Gumus, O. Algul, G. Eren, H. Eroglu, N. Diril, S. Gür and A. Özkul, Eur. J. Med. Chem., 38, 473 (2003); https://doi.org/10.1016/S0223-5234(03)00058-8.
M. Gökçe, S. Utku, S. Gür, A. Özkul and F. Gümüs, Eur. J. Med. Chem., 40, 135 (2005); https://doi.org/10.1016/j.ejmech.2004.09.017.
N. Bharti, M.T. Shailendra, M.T. Gonzalez Garza, D.E. Cruz-Vega, J. Castro-Garza, K. Saleem, F. Naqvi, M.R. Maurya and A. Azam, Bioorg. Med. Chem. Lett., 12, 869 (2002); https://doi.org/10.1016/S0960-894X(02)00034-3.
Y. Elerman, M. Kabak and A. Elmali, Z. Natruforsch., 57, 651 (2002); https://doi.org/10.1515/znb-2002-0610.
N. Chantarasiri, V. Ruangpornvisuti, N. Muangsin, T. Mananunsap, H. Detsen, C. Batiya and N. Chaichit, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 157 (2005); https://doi.org/10.1016/j.saa.2004.03.015.
N. Chantarasiri, V. Ruangpornvisuti, N. Muangsin, T. Mananunsap, H. Detsen, C. Batiya and N. Chaichit, J. Mol. Struct., 701, 93 (2004); https://doi.org/10.1016/j.molstruc.2004.05.015.
A.A. Soliman and G.G. Mohamed, Thermochim. Acta, 421, 151 (2004); https://doi.org/10.1016/j.tca.2004.03.010.
J. Kaizer, Z. Zsigmond, I. Ganszky, G. Speier, M. Giorgi and M. Réglier, Inorg. Chem., 46, 4660 (2007); https://doi.org/10.1021/ic062309a.
E. Tas, I. Ucar, V.T. Kasumov, A. Kilic and A. Bulut, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 463 (2007); https://doi.org/10.1016/j.saa.2006.11.052.
E. Tas, V. Kasumov, O. Sahin and M. Özdemir, Transition Met. Chem., 27, 442 (2002); https://doi.org/10.1023/A:1015011517647.
J. Cui and M. Zhang, J. Chem. Res., 34, 41 (2010); https://doi.org/10.3184/030823410X12628736648105.
M. Ulusoy, O. Sahin, O. Büyükgüngör and B. Çetinkaya, J. Organomet. Chem., 693, 1895 (2008); https://doi.org/10.1016/j.jorganchem.2008.02.017.
N. Bharti, M.R. Maurya, F. Naqvi and A. Azam, Bioorg. Med. Chem. Lett., 10, 2243 (2000); https://doi.org/10.1016/S0960-894X(00)00446-7.
G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press: Oxford, vol. 5, p. 775 (1987).
K.D. Karlin and J. Zubieta, Copper Coordination Chemistry, Biochemical and Inorganic perspective, Adenine Press, Guilderland: New York (1983-1986).
J. Gaazo, I.B. Bersuker, J. Garaj, M. Kabesova, H. Langfelderova, J. Kojout, M. Melnik, M. Serator and F. Valach, Coord. Chem. Rev., 19, 253 (1976); https://doi.org/10.1016/S0010-8545(00)80317-3.
M. Palaniandavar, R.J. Butcher and A.W. Addison, Inorg. Chem., 35, 467 (1996); https://doi.org/10.1021/ic941396g.
A. Benzekri, P. Dubourdeaux, J.M. Latour, P. Rey and J. Laugier, J. Chem. Soc., Dalton Trans., 3359 (1991); https://doi.org/10.1039/dt9910003359.
J.D. Crane and D.E. Fenton, Polyhedron, 10, 1809 (1991); https://doi.org/10.1016/S0277-5387(00)83804-8.
H.P. Berends and D.W. Stephan, Inorg. Chim. Acta, 99, L53 (1985); https://doi.org/10.1016/S0020-1693(00)87956-6.
J.D. Crane, R. Hughes and E. Sinn, Inorg. Chim. Acta, 237, 181 (1995); https://doi.org/10.1016/0020-1693(95)04653-Q.
V. Mckee, J.V. Dagdigian, R. Bau and C.A. Reed, J. Am. Chem. Soc., 103, 7000 (1981); https://doi.org/10.1021/ja00413a054.
H.J. Hoorn, P. de Joode, W.L. Driessen and J. Reedijk, React. Funct. Polym., 27, 223 (1995); https://doi.org/10.1016/1381-5148(95)96870-G.
P.M. van Berkel, D.J. Dijkstra, W.L. Driessen, J. Reedijk and D.C. Sherrington, React. Funct. Polym., 28, 39 (1995); https://doi.org/10.1016/1381-5148(95)00078-2.
D.D. Perrin, Armarego and D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press Pvt Ltd: Oxford, edn 1 (1966).
B. Roopashree, V. Gayathri and H. Mukund, J. Coord. Chem., 65, 1354 (2012); https://doi.org/10.1080/00958972.2012.673123.
G.R. Suman, G. Bubbly, S.B. Gudennavar, S. Muthu, B. Roopashree, V. Gayatri and N.M. Nanje Gowda, J. Mol. Struct., 1139, 247 (2017); https://doi.org/10.1016/j.molstruc.2017.03.043.
W.I. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
G. Mohamed, S.A. Salam, S. Oumar, U. Russo and V. Maurizio, Polyhedron, 14, 655 (1995); https://doi.org/10.1016/0277-5387(94)00295-P.
G. Bombieri, E. Benetollo, A. Polo, L. De Cola, D.L. Smailes and L.M. Vallarino, Inorg. Chem., 25, 1127 (1986); https://doi.org/10.1021/ic00228a014.
L. De Cola, D.L. Smailes and L.M. Vallarino, Inorg. Chem., 25, 1729 (1986); https://doi.org/10.1021/ic00230a042.
M.P. Ngwenya, D. Chen, A.E. Martell and J. Reibenspies, Inorg. Chem., 30, 2732 (1991); https://doi.org/10.1021/ic00013a006.
W. Coleman and L.T. Taylor, Inorg. Chem., 10, 2195 (1971); https://doi.org/10.1021/ic50104a021.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York, edn 4 (1986).
N.M.N. Gowda, S.B. Naikar and G.K.N. Reddy, Adv. Inorg. Chem. Radiochem., 28, 255 (1984); https://doi.org/10.1016/S0898-8838(08)60210-X.
A. Bax and M.F. Summers, J. Am. Chem. Soc., 108, 2093 (1986); https://doi.org/10.1021/ja00268a061.
W. Willker, D. Leibfritz, R. Kerssebaum and W. Bermel, Magn. Reson. Chem., 31, 287 (1993); https://doi.org/10.1002/mrc.1260310315.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: New York (1968).
A. Piguet, B. Bocquet, E. Muller and A.F. Williams, Helv. Chim. Acta, 72, 323 (1989); https://doi.org/10.1002/hlca.19890720218.
R.M. Silverstein, G.C. Bassler and T.C. Morril, Spectroscopic Identification of Organic Compounds, Wiley: Singapore, edn 4 (1981).
R. Nagar, Inorg. Biochem., 40, 349 (1990); https://doi.org/10.1016/0162-0134(90)80069-A.
Y. Anjaneyulu and R.P. Rao, Synth. React. Inorg. Met.-Org. Chem., 26, 257 (1986); https://doi.org/10.1080/00945718608057530.