Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth, Nucleation Kinetics and Structural Studies on L-Valine Piperazinium Single Crystals
Corresponding Author(s) : D. Benny Anburaj
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
A single crystal of L-valine piperazinium was grown by slow growth technique. Structural studies confirm the monoclinic structure with space group P21. The solubility curve showing high soluble in water and peak shows positive solubility nature. A tiny nucleation formed at 10 ºC for room temperature process and it gradually increasing with respect process temperature. Induction period revels that time period for nucleation at constant temperature and it absorbed that in (10 ºC) 500 s for room temperature. The calculated interfacial tension values are greater than one order other amino acid based piperazinium. By using growth parameters bulk L-valine piperazinium crystal were harvested and single crystal XRD confirms that formation of L-valine piperazinium crystals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press: London, vol. 1 (1987).
- J. Badan, R. Hierle, A. Perigand and J. Zyss, ed.: D.J. Williams: Nonlinear Optical Properties of Organic Molecules and Polymeric Materials Vol. 233, American Chemical Society, Washington, DC (1993).
- S. Gunasekaran and B. Anita Indian J. Pure Appl. Phys., 46, 833 (2008).
- T. Eicher and S. Hauptmann, The Chemistry of Hetrocycles, Thieme: Stuttgart, p. 422 (1995).
- T. Suzuki, N. Fukazawa, K. San-nohe, W. Sato, O. Yano and T. Tsuruo, J. Med. Chem., 40, 2047 (1997); https://doi.org/10.1021/jm960869l.
- V. Sasikala, D. Sajan, N. Vijayan, K. Chaitanya, M.S. Babu Raj and B.H. Selin Joy, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 123, 127 (2014); https://doi.org/10.1016/j.saa.2013.12.045.
- M. Fanqing, L. Mengkai, Y. Xin, Y. Wentao and W. Yuguo, Mater. Res. Bull., 31, 1121 (1996); https://doi.org/10.1016/0025-5408(96)00095-5.
- M. Vanier and F. Brisse, Acta Crystallogr. B, 38, 3060 (1982); https://doi.org/10.1107/S0567740882010826.
- Z. Dega-Szafran, A. Katrusiak and M. Szafran, J. Mol. Struct., 920, 202 (2009); https://doi.org/10.1016/j.molstruc.2008.10.055.
- T.R. Jensen, J.E. Jorgensen, R.G. Hazell, H.J. Jakobsen, M.A. Chevallier, L. Jorgensen and A. Wiedermann, Solid State Sci., 9, 72 (2007); https://doi.org/10.1016/j.solidstatesciences.2006.11.004.
- C.B. Aakeroy, P.B. Hitchcock and K.R. Seddon, J. Chem. Soc. Chem. Commun., 7, 553 (1992); https://doi.org/10.1039/C39920000553.
- V. Subhashini, S. Ponnusamy and C. Muthamizhchelvan, J. Cryst. Growth, 363, 211 (2013); https://doi.org/10.1016/j.jcrysgro.2012.10.045.
- C.B. Aakeroy, G.S. Bahra and M. Nieuwenhuyzen, Acta Crystallogr. C, 52, 1471 (1996); https://doi.org/10.1107/S0108270195016374.
- P. Rekha, G. Peramaiyan, R. Mohan Kumar and R. Kanagadurai, Mater. Lett., 129, 202 (2014); https://doi.org/10.1016/j.matlet.2014.05.028.
- G.H. Sun, G.H. Zhang, X.Q. Wang, Z.H. Sun and D. Xu, Mater. Chem. Phys., 122, 524 (2010); https://doi.org/10.1016/j.matchemphys.2010.03.038.
- J. Nyvlt, O. Sohnel, J.J. Zola and G. Kostescky, J. Cryst. Growth, 62, 543 (1983).
- N.P. Zaitseva, L.N. Rashkovich and S.V. Bogatyreva, J. Cryst. Growth, 148, 276 (1995); https://doi.org/10.1016/0022-0248(94)00606-7.
- T. Balu, T.R. Rajasekaran and P. Murugakoothan, Physica B, 404, 1813 (2009); https://doi.org/10.1016/j.physb.2009.02.034.
- A.E. Nielsen and O. Söhnel, J. Cryst. Growth, 11, 233 (1971); https://doi.org/10.1016/0022-0248(71)90090-X.
- J. Christoffersen, E. Rostrup and M.R. Christoffersen, J. Cryst. Growth, 113, 599 (1991); https://doi.org/10.1016/0022-0248(91)90096-N.
- K. Sangwal, J. Cryst. Growth, 97, 393 (1989); https://doi.org/10.1016/0022-0248(89)90221-2.
- A.E. Nielsen and S. Sarig, J. Cryst. Growth, 8, 1 (1971); https://doi.org/10.1016/0022-0248(71)90014-5.
- F. Joseph Kumar, D. Jayaraman, C. Subramanian and P. Ramasamy, J. Cryst. Growth, 137, 535 (1994); https://doi.org/10.1016/0022-0248(94)90995-4.
- N.P. Rajesh, V. Kannan, P. Santhana Raghavan, P. Ramasamy and C.W. Lan, Mater. Chem. Phys., 76, 181 (2002); https://doi.org/10.1016/S0254-0584(01)00525-9.
- A.G. Walton, ed.: A. C. Zettlemoyer, Nucleation, Marcel Dekker: New York, Chap. 5 (1969).
- S. Boomadevi, R. Dhanasekaran and P. Ramasamy, Cryst. Res. Technol., 37, 159 (2002); https://doi.org/10.1002/1521-4079(200202)37:2/3<159::AIDCRAT159>3.0.CO;2-Y.
- S.K. Kurtz and J.J. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
References
D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press: London, vol. 1 (1987).
J. Badan, R. Hierle, A. Perigand and J. Zyss, ed.: D.J. Williams: Nonlinear Optical Properties of Organic Molecules and Polymeric Materials Vol. 233, American Chemical Society, Washington, DC (1993).
S. Gunasekaran and B. Anita Indian J. Pure Appl. Phys., 46, 833 (2008).
T. Eicher and S. Hauptmann, The Chemistry of Hetrocycles, Thieme: Stuttgart, p. 422 (1995).
T. Suzuki, N. Fukazawa, K. San-nohe, W. Sato, O. Yano and T. Tsuruo, J. Med. Chem., 40, 2047 (1997); https://doi.org/10.1021/jm960869l.
V. Sasikala, D. Sajan, N. Vijayan, K. Chaitanya, M.S. Babu Raj and B.H. Selin Joy, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 123, 127 (2014); https://doi.org/10.1016/j.saa.2013.12.045.
M. Fanqing, L. Mengkai, Y. Xin, Y. Wentao and W. Yuguo, Mater. Res. Bull., 31, 1121 (1996); https://doi.org/10.1016/0025-5408(96)00095-5.
M. Vanier and F. Brisse, Acta Crystallogr. B, 38, 3060 (1982); https://doi.org/10.1107/S0567740882010826.
Z. Dega-Szafran, A. Katrusiak and M. Szafran, J. Mol. Struct., 920, 202 (2009); https://doi.org/10.1016/j.molstruc.2008.10.055.
T.R. Jensen, J.E. Jorgensen, R.G. Hazell, H.J. Jakobsen, M.A. Chevallier, L. Jorgensen and A. Wiedermann, Solid State Sci., 9, 72 (2007); https://doi.org/10.1016/j.solidstatesciences.2006.11.004.
C.B. Aakeroy, P.B. Hitchcock and K.R. Seddon, J. Chem. Soc. Chem. Commun., 7, 553 (1992); https://doi.org/10.1039/C39920000553.
V. Subhashini, S. Ponnusamy and C. Muthamizhchelvan, J. Cryst. Growth, 363, 211 (2013); https://doi.org/10.1016/j.jcrysgro.2012.10.045.
C.B. Aakeroy, G.S. Bahra and M. Nieuwenhuyzen, Acta Crystallogr. C, 52, 1471 (1996); https://doi.org/10.1107/S0108270195016374.
P. Rekha, G. Peramaiyan, R. Mohan Kumar and R. Kanagadurai, Mater. Lett., 129, 202 (2014); https://doi.org/10.1016/j.matlet.2014.05.028.
G.H. Sun, G.H. Zhang, X.Q. Wang, Z.H. Sun and D. Xu, Mater. Chem. Phys., 122, 524 (2010); https://doi.org/10.1016/j.matchemphys.2010.03.038.
J. Nyvlt, O. Sohnel, J.J. Zola and G. Kostescky, J. Cryst. Growth, 62, 543 (1983).
N.P. Zaitseva, L.N. Rashkovich and S.V. Bogatyreva, J. Cryst. Growth, 148, 276 (1995); https://doi.org/10.1016/0022-0248(94)00606-7.
T. Balu, T.R. Rajasekaran and P. Murugakoothan, Physica B, 404, 1813 (2009); https://doi.org/10.1016/j.physb.2009.02.034.
A.E. Nielsen and O. Söhnel, J. Cryst. Growth, 11, 233 (1971); https://doi.org/10.1016/0022-0248(71)90090-X.
J. Christoffersen, E. Rostrup and M.R. Christoffersen, J. Cryst. Growth, 113, 599 (1991); https://doi.org/10.1016/0022-0248(91)90096-N.
K. Sangwal, J. Cryst. Growth, 97, 393 (1989); https://doi.org/10.1016/0022-0248(89)90221-2.
A.E. Nielsen and S. Sarig, J. Cryst. Growth, 8, 1 (1971); https://doi.org/10.1016/0022-0248(71)90014-5.
F. Joseph Kumar, D. Jayaraman, C. Subramanian and P. Ramasamy, J. Cryst. Growth, 137, 535 (1994); https://doi.org/10.1016/0022-0248(94)90995-4.
N.P. Rajesh, V. Kannan, P. Santhana Raghavan, P. Ramasamy and C.W. Lan, Mater. Chem. Phys., 76, 181 (2002); https://doi.org/10.1016/S0254-0584(01)00525-9.
A.G. Walton, ed.: A. C. Zettlemoyer, Nucleation, Marcel Dekker: New York, Chap. 5 (1969).
S. Boomadevi, R. Dhanasekaran and P. Ramasamy, Cryst. Res. Technol., 37, 159 (2002); https://doi.org/10.1002/1521-4079(200202)37:2/3<159::AIDCRAT159>3.0.CO;2-Y.
S.K. Kurtz and J.J. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.