Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
in silico Single Nucleotide Polymorphism Prediction and Design for Targeting Amyloid Precursor Protein in Alzheimers Disease
Corresponding Author(s) : T.S. Saranya
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder, is the common cause of dementia and affect life quality. Present research analysis is based on the amyloid precursor protein as it is one of the major biomarkers of Alzheimer’s disease, the insoluble part of which gets deposited due to the inappropriate cleavage by secretase enzyme. The instrumental part of this study was performed by using Computer Aided Drug Design (CADD). About 23 phytoconstituents were taken, from these constituents rosamarinic acid produced the highest docking score. Preliminary characterizations of all the ligands were conducted using Biovia Discovery studio along with protein characterization, Lipinski rule analysis and ADMET. The in silico analysis convincingly predicted the action of rosamarinic acid, against the formation of amyloid plaque by binding with the amyloid precursor protein .Details of single nucleotide polymorphism on gene APPI were analyzed by dbSNP database and displays the need for further in vitro study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Holmes, Medicine J., 40, 628 (2012); https://doi.org/10.1016/j.mpmed.2012.08.012.
- A. Wimo, L. Jönsson, J. Bond, M. Prince and B. Winblad, Alzheimers Dement., 9, 1 (2013); https://doi.org/10.1016/j.jalz.2012.11.006.
- A.M. Asha, T.S. Saranya, K.S. Silvipriya and J. Chithra, Res. J. Pharm. Biol. Chem. Sci., 6, 414 (2015).
- K.U. Radhagayathri, P.K.K. Namboori, V.P. Mohandas, T. Subeesh, D. Gopakumar and K.I. Ramachandran, Int. J. Nanosci., 10, 319 (2011); https://doi.org/10.1142/S0219581X11008010.
- M. Ratnaprava, Univ. J. Ayur. Herb Med., 4, 9 (2016).
- R. Thomas, R. Hari, J. Joy, S. Krishnan, A.N. Swathy, S.S. Nair, A.A. Manakadan, Sathianarayanan and T.S. Saranya, Res. J. Pharm. Tech., 8, 1673 (2015); https://doi.org/10.5958/0974-360X.2015.00302.9.
- T. Sobow, M. Flirski and P.P. Liberski, Acta Neurobiol. Exp., 64, 53 (2004).
- X. Sun, W. Dong, Y. Chan and Y.D. Wang, Front. Pharmacol., 6, 221 (2015); https://doi.org/10.3389/fphar.2015.00221.
- X.X. Wang, M.S. Tan, J.T. Yu and L. Tan, BioMed. Res. Int., 2012, Article ID 908636 (2014); https://doi.org/10.1155/2014/908636.
- I. Hussain, D. Powell, D.R. Howlett, D.G. Tew, T.D. Meek, C. Chapman, I.S. Gloger, K.E. Murphy, C.D. Southan, D.M. Ryan, T.S. Smith, D.L. Simmons, F.S. Walsh, C. Dingwall and G. Christie, Mol. Call. Neuosci., 14, 419 (1999); https://doi.org/10.1006/mcne.1999.0811.
- M.S. Parihar and T. Hemnani, J. Clin. Neurosci., 11, 456 (2004); https://doi.org/10.1016/j.jocn.2003.12.007.
- F. Chiti and C.M. Dobson, Anal. Rev. Biochem., 75, 333 (2006); https://doi.org/10.1146/annurev.biochem.75.101304.123901.
- H. Hatcher, R. Planalp, J. Cho, F.M. Torti and S.V. Torti, Cell. Mol. Life Sci., 65, 1631 (2008); https://doi.org/10.1007/s00018-008-7452-4.
- G.M. Cole, B. Teter and S.A. Frautschy, Adv. Exp. Med. Biol., 595, 197 (2007); https://doi.org/10.1007/978-0-387-46401-5_8.
- M. Waseem and S. Parvez, Protoplasma, 253, 417 (2016); https://doi.org/10.1007/s00709-015-0821-6.
- S. Davinelli, N. Sapere, D. Zella, R. Bracale, M. Intrieri and G. Scapagnini, Oxid. Med. Cell Longev., 2012, Article ID 386527 (2012); https://doi.org/10.1155/2012/386527.
- K. Chandrasekaran, Z. Mehrabian, B. Spinnewyan, K. Drieu and G. Fiskum, Pharmacogn. Rev., 6, 81 (2012); https://doi.org/10.4103/0973-7847.99898.
- K. Chandrasekaran, Z. Mehrabian, B. Spinnewyn, K. Drieu and G. Fiskum, Brain Res., 922, 282 (2001); https://doi.org/10.1016/S0006-8993(01)03188-2.
- R.H. Zhu, H.D. Li, H.L. Cai, Z.P. Jiang, P. Xu, L.B. Dai and W.X. Peng, J. Pharm. Biomed. Anal., 96, 31 (2014); https://doi.org/10.1016/j.jpba.2014.03.017.
- M.A. Rather, A.J. Thenmozhi, T. Manivasagam, J. Nataraj, M.M. Essa and S.B Chidambaram, Front. Biosci., 10, 287 (2018); https://doi.org/10.2741/e823.
- N. Sehgal, A. Gupta, R.K. Valli, S.D. Joshi, J.T. Mills, E. Hamel, P. Khanna, S.C. Jain and S.S. Thakur, Proc. Natl. Acad. Sci. USA, 109, 3510 (2012); https://doi.org/10.1073/pnas.1112209109.
- T. Lin and M.F. Beal, Nature, 443, 787 (2006); https://doi.org/10.1038/nature05292.
- A.M. Sabogal-Guaqueta, E. Osorio and G.P. Cardona-Gomez, J. Neuropharm., 102, 111 (2016); https://doi.org/10.1016/j.neuropharm.2015.11.002.
- J.K. Kim, S.J. Choi, H.Y. Cho, H.J. Hwang, Y.J Kim, S.T. Lim, C.J. Kim, H.K. Kim, S. Peterson and D.H. Shin, Biosci. Biotechnol. Biochem., 74, 397 (2010). https://doi.org/10.1271/bbb.90585.
- A. Rajendran, S. Martin, R. Eso, A.A. Manakadan and T.S. Saranya, J. Pharm. Sci. Res., 9, 1117 (2017).
- M. Akram and A. Nawaz, Neural Regen Res., 12, 660 (2017); https://doi.org/10.4103/1673-5374.205108.
- M. Ozarowski, P.L. Mikolajczak, A. Bogacz, R. Kujawski and P.M. Mrozikiewicz, Herba Polonica, 56, 91 (2010).
- C.L. Lin, T.F. Chen, M.J. Chiu, T.D. Way and J.K. Lin, Neurobiol. Aging, 30, 81 (2009); https://doi.org/10.1016/j.neurobiolaging.2007.05.012.
- M. He, M.J. Zhao, M.-J. Wei, W.-F. Yao, H.-S. Zhao and F.-J. Chen, Biol. Pharm. Bull., 32, 55 (2009); https://doi.org/10.1248/bpb.32.55.
- M.R. Wilkins, E. Gasteiger, A. Bairoch, J.C. Sanchez, K.L. Williams, R.D. Appel and D.F. Hochstrasser, ed.: A.J. Link, Protein Identification and Analysis Tools in the ExPASy Server. 2-D Proteome Analysis Protocols, In: Methods in Molecular Biology, Humana Press, vol 112 (1999).
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1.
- C.A. Lipinski, J. Pharmacol. Toxicol. Methods, 44, 235 (2000); https://doi.org/10.1016/S1056-8719(00)00107-6.
- Y. Hirakura, W.W. Yiu, A. Yamamoto and B.L. Kagan, Amyloid, 7, 194 (2000); https://doi.org/10.3109/13506120009146834.
- C. Geourjon and G. Deleage, Comput. Appl. Biosci., 11, 681 (1996).
- S.G. Gayathri, V. Vishnu, S. Shibu, T.S. Saranya and A.M. Asha, J. Chem. Pharm. Res., 7, 170 (2015).
- P. Kumar, S. Henikoff and P.C. Ng, Nat. Protoc., 4, 1073 (2009); https://doi.org/10.1038/nprot.2009.86.
- P.C. Ng and S. Henikoff, Genome Res., 11, 863 (2001); https://doi.org/10.1101/gr.176601.
- P.C. Ng and S. Henikoff, Genome Res., 12, 436 (2002); https://doi.org/10.1101/gr.212802.
- P.C. Ng and S. Henikoff, Nucleic Acids Res., 31, 3812 (2003); https://doi.org/10.1093/nar/gkg509.
- I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov and S.R. Sunyaev, Nat. Methods, 7, 248 (2010); https://doi.org/10.1038/nmeth0410-248.
- V. Ramensky and P.B.S. Sunyaev, Nucleic Acids Res., 30, 3894 (2002); https://doi.org/10.1093/nar/gkf493.
- I. Adzhubei, M. Daniel and R. Jordan, Curr. Protoc. Hum. Genet., 7, 1 (2013).
- I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov and S.R. Sunyaev, Nat. Methods, 7, 248 (2010); https://doi.org/10.1038/nmeth0410-248.
- S. Hicks, D.A. Wheeler, S.E. Plon and M. Kimmel, Hum. Mutat., 32, 661 (2011); https://doi.org/10.1002/humu.21490.
- H. Zheng and E.H. Koo, Mol. Neurodegener., 1, 5 (2006); https://doi.org/10.1186/1750-1326-1-5.
- A. Goate, M.C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James, R. Mant, P. Newton, K. Rooke, P. Roques, C. Talbot, M. Pericak-Vance, A. Roses, R. Williamson, M. Rossor, M. Owen and J. Hardy, Nature, 349, 704 (1991); https://doi.org/10.1038/349704a0.
- J. Murrell, M. Farlow, B. Ghetti and M.D. Benson, Science, 254, 97 (1991); https://doi.org/10.1126/science.1925564.
References
C. Holmes, Medicine J., 40, 628 (2012); https://doi.org/10.1016/j.mpmed.2012.08.012.
A. Wimo, L. Jönsson, J. Bond, M. Prince and B. Winblad, Alzheimers Dement., 9, 1 (2013); https://doi.org/10.1016/j.jalz.2012.11.006.
A.M. Asha, T.S. Saranya, K.S. Silvipriya and J. Chithra, Res. J. Pharm. Biol. Chem. Sci., 6, 414 (2015).
K.U. Radhagayathri, P.K.K. Namboori, V.P. Mohandas, T. Subeesh, D. Gopakumar and K.I. Ramachandran, Int. J. Nanosci., 10, 319 (2011); https://doi.org/10.1142/S0219581X11008010.
M. Ratnaprava, Univ. J. Ayur. Herb Med., 4, 9 (2016).
R. Thomas, R. Hari, J. Joy, S. Krishnan, A.N. Swathy, S.S. Nair, A.A. Manakadan, Sathianarayanan and T.S. Saranya, Res. J. Pharm. Tech., 8, 1673 (2015); https://doi.org/10.5958/0974-360X.2015.00302.9.
T. Sobow, M. Flirski and P.P. Liberski, Acta Neurobiol. Exp., 64, 53 (2004).
X. Sun, W. Dong, Y. Chan and Y.D. Wang, Front. Pharmacol., 6, 221 (2015); https://doi.org/10.3389/fphar.2015.00221.
X.X. Wang, M.S. Tan, J.T. Yu and L. Tan, BioMed. Res. Int., 2012, Article ID 908636 (2014); https://doi.org/10.1155/2014/908636.
I. Hussain, D. Powell, D.R. Howlett, D.G. Tew, T.D. Meek, C. Chapman, I.S. Gloger, K.E. Murphy, C.D. Southan, D.M. Ryan, T.S. Smith, D.L. Simmons, F.S. Walsh, C. Dingwall and G. Christie, Mol. Call. Neuosci., 14, 419 (1999); https://doi.org/10.1006/mcne.1999.0811.
M.S. Parihar and T. Hemnani, J. Clin. Neurosci., 11, 456 (2004); https://doi.org/10.1016/j.jocn.2003.12.007.
F. Chiti and C.M. Dobson, Anal. Rev. Biochem., 75, 333 (2006); https://doi.org/10.1146/annurev.biochem.75.101304.123901.
H. Hatcher, R. Planalp, J. Cho, F.M. Torti and S.V. Torti, Cell. Mol. Life Sci., 65, 1631 (2008); https://doi.org/10.1007/s00018-008-7452-4.
G.M. Cole, B. Teter and S.A. Frautschy, Adv. Exp. Med. Biol., 595, 197 (2007); https://doi.org/10.1007/978-0-387-46401-5_8.
M. Waseem and S. Parvez, Protoplasma, 253, 417 (2016); https://doi.org/10.1007/s00709-015-0821-6.
S. Davinelli, N. Sapere, D. Zella, R. Bracale, M. Intrieri and G. Scapagnini, Oxid. Med. Cell Longev., 2012, Article ID 386527 (2012); https://doi.org/10.1155/2012/386527.
K. Chandrasekaran, Z. Mehrabian, B. Spinnewyan, K. Drieu and G. Fiskum, Pharmacogn. Rev., 6, 81 (2012); https://doi.org/10.4103/0973-7847.99898.
K. Chandrasekaran, Z. Mehrabian, B. Spinnewyn, K. Drieu and G. Fiskum, Brain Res., 922, 282 (2001); https://doi.org/10.1016/S0006-8993(01)03188-2.
R.H. Zhu, H.D. Li, H.L. Cai, Z.P. Jiang, P. Xu, L.B. Dai and W.X. Peng, J. Pharm. Biomed. Anal., 96, 31 (2014); https://doi.org/10.1016/j.jpba.2014.03.017.
M.A. Rather, A.J. Thenmozhi, T. Manivasagam, J. Nataraj, M.M. Essa and S.B Chidambaram, Front. Biosci., 10, 287 (2018); https://doi.org/10.2741/e823.
N. Sehgal, A. Gupta, R.K. Valli, S.D. Joshi, J.T. Mills, E. Hamel, P. Khanna, S.C. Jain and S.S. Thakur, Proc. Natl. Acad. Sci. USA, 109, 3510 (2012); https://doi.org/10.1073/pnas.1112209109.
T. Lin and M.F. Beal, Nature, 443, 787 (2006); https://doi.org/10.1038/nature05292.
A.M. Sabogal-Guaqueta, E. Osorio and G.P. Cardona-Gomez, J. Neuropharm., 102, 111 (2016); https://doi.org/10.1016/j.neuropharm.2015.11.002.
J.K. Kim, S.J. Choi, H.Y. Cho, H.J. Hwang, Y.J Kim, S.T. Lim, C.J. Kim, H.K. Kim, S. Peterson and D.H. Shin, Biosci. Biotechnol. Biochem., 74, 397 (2010). https://doi.org/10.1271/bbb.90585.
A. Rajendran, S. Martin, R. Eso, A.A. Manakadan and T.S. Saranya, J. Pharm. Sci. Res., 9, 1117 (2017).
M. Akram and A. Nawaz, Neural Regen Res., 12, 660 (2017); https://doi.org/10.4103/1673-5374.205108.
M. Ozarowski, P.L. Mikolajczak, A. Bogacz, R. Kujawski and P.M. Mrozikiewicz, Herba Polonica, 56, 91 (2010).
C.L. Lin, T.F. Chen, M.J. Chiu, T.D. Way and J.K. Lin, Neurobiol. Aging, 30, 81 (2009); https://doi.org/10.1016/j.neurobiolaging.2007.05.012.
M. He, M.J. Zhao, M.-J. Wei, W.-F. Yao, H.-S. Zhao and F.-J. Chen, Biol. Pharm. Bull., 32, 55 (2009); https://doi.org/10.1248/bpb.32.55.
M.R. Wilkins, E. Gasteiger, A. Bairoch, J.C. Sanchez, K.L. Williams, R.D. Appel and D.F. Hochstrasser, ed.: A.J. Link, Protein Identification and Analysis Tools in the ExPASy Server. 2-D Proteome Analysis Protocols, In: Methods in Molecular Biology, Humana Press, vol 112 (1999).
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1.
C.A. Lipinski, J. Pharmacol. Toxicol. Methods, 44, 235 (2000); https://doi.org/10.1016/S1056-8719(00)00107-6.
Y. Hirakura, W.W. Yiu, A. Yamamoto and B.L. Kagan, Amyloid, 7, 194 (2000); https://doi.org/10.3109/13506120009146834.
C. Geourjon and G. Deleage, Comput. Appl. Biosci., 11, 681 (1996).
S.G. Gayathri, V. Vishnu, S. Shibu, T.S. Saranya and A.M. Asha, J. Chem. Pharm. Res., 7, 170 (2015).
P. Kumar, S. Henikoff and P.C. Ng, Nat. Protoc., 4, 1073 (2009); https://doi.org/10.1038/nprot.2009.86.
P.C. Ng and S. Henikoff, Genome Res., 11, 863 (2001); https://doi.org/10.1101/gr.176601.
P.C. Ng and S. Henikoff, Genome Res., 12, 436 (2002); https://doi.org/10.1101/gr.212802.
P.C. Ng and S. Henikoff, Nucleic Acids Res., 31, 3812 (2003); https://doi.org/10.1093/nar/gkg509.
I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov and S.R. Sunyaev, Nat. Methods, 7, 248 (2010); https://doi.org/10.1038/nmeth0410-248.
V. Ramensky and P.B.S. Sunyaev, Nucleic Acids Res., 30, 3894 (2002); https://doi.org/10.1093/nar/gkf493.
I. Adzhubei, M. Daniel and R. Jordan, Curr. Protoc. Hum. Genet., 7, 1 (2013).
I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov and S.R. Sunyaev, Nat. Methods, 7, 248 (2010); https://doi.org/10.1038/nmeth0410-248.
S. Hicks, D.A. Wheeler, S.E. Plon and M. Kimmel, Hum. Mutat., 32, 661 (2011); https://doi.org/10.1002/humu.21490.
H. Zheng and E.H. Koo, Mol. Neurodegener., 1, 5 (2006); https://doi.org/10.1186/1750-1326-1-5.
A. Goate, M.C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James, R. Mant, P. Newton, K. Rooke, P. Roques, C. Talbot, M. Pericak-Vance, A. Roses, R. Williamson, M. Rossor, M. Owen and J. Hardy, Nature, 349, 704 (1991); https://doi.org/10.1038/349704a0.
J. Murrell, M. Farlow, B. Ghetti and M.D. Benson, Science, 254, 97 (1991); https://doi.org/10.1126/science.1925564.