Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Probing into Methylene Blue Interaction with Polyglutamic Acid: Spectroscopic and Molecular Dynamics Simulation Studies
Corresponding Author(s) : Ashok Kumar Dubey
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Polyglutamic acid (PGA) is an anionic biopolymer which is stained with methylene blue (MB) in agar or polyacrylamide gels for analysis. Polyglutamic acid identification involves a tedious extraction and analytical process. The molecular association of polyglutamic acid and methylene blue can be used for rapid spectroscopic detection of polyglutamic acid production during fermentation. This triggered the study on investigation of polymer-dye interaction mechanism. Concentration range of polyglutamic acid, 0.001 to 0.06 μM with a fixed methylene blue concentration of 25 μM exhibited significant differences in the spectra. Preferential higher order aggregate formation of methylene blue molecules was substantiated with molecular dynamics simulation results. Fluorescence spectroscopy demonstrated a quenching effect of polyglutamic acid on methylene blue fluorescence until a certain concentration range, beyond which the Stern-Volmer (SV) plot shows a negative deviation. Polyglutamic acid was observed to promote higher order of intramolecular stacking interactions of methylene blue, possibly due to interplay of electrostatic and hydrophobic interactions between polyglutamic acid, methylene blue alone and PGA-MB systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.R. Khalil, V.U. Irorere, I. Radecka, A.T.H. Burns, M. Kowalczuk, J.L. Mason and M.P. Khechara, Materials, 9, 28 (2016); https://doi.org/10.3390/ma9010028.
- H. Kubota, Y. Nambu and T. Endo, J. Polym. Sci. A Polym. Chem., 34, 1347 (1996); https://doi.org/10.1002/(SICI)1099-0518(199605)34:7<1347::AIDPOLA24>3.0.CO;2-8.
- I. Bajaj and R. Singhal, Bioresour. Technol., 102, 5551 (2011); https://doi.org/10.1016/j.biortech.2011.02.047.
- W. Zeng, Y. Lin, Z. Qi, Y. He, D. Wang, G. Chen and Z. Liang, Appl. Microbiol. Biotechnol., 97, 2163 (2013); https://doi.org/10.1007/s00253-013-4717-0.
- Y. Ogawa, F. Yamaguchi, K. Yuasa and Y. Tahara, Biosci. Biotechnol. Biochem., 61, 1684 (1997); https://doi.org/10.1271/bbb.61.1684.
- G.A. Birrer, A.M. Cromwick and R.A. Gross, Int. J. Biol. Macromol., 16, 265 (1994); https://doi.org/10.1016/0141-8130(94)90032-9.
- P.M. Chatterjee, S. Datta, D.P. Tiwari, R. Raval and A.K. Dubey, Appl. Biochem. Biotechnol., 185, 270 (2018); https://doi.org/10.1007/s12010-017-2654-6.
- J.A. Bergeron and M. Singer, J. Cell Biol., 4, 433 (1958); https://doi.org/10.1083/jcb.4.4.433.
- F. Yamaguchi, Y. Ogawa, M. Kikuchi, K. Yuasa and H. Motai, Biosci. Biotechnol. Biochem., 60, 255 (1996); https://doi.org/10.1271/bbb.60.255.
- B.S. Inbaraj and B.H. Chen, Bioresour. Technol., 102, 8868 (2011); https://doi.org/10.1016/j.biortech.2011.06.079.
- B.S. Inbaraj, C.P. Chiu, G.H. Ho, J. Yang and B.H. Chen, J. Hazard. Mater., 137, 226 (2006); https://doi.org/10.1016/j.jhazmat.2006.01.057.
- P.A. Tafulo, R.B. Queirós and G. González-Aguilar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 295 (2009); https://doi.org/10.1016/j.saa.2009.02.033.
- B. Liu, L. Wen, K. Nakata, X. Zhao, S. Liu, T. Ochiai, T. Murakami and A. Fujishima, Eur. Chem. J., 18, 12705 (2012); https://doi.org/10.1002/chem.201200178.
- S.B. Mahmoud, A.H. Hamzaoui and W. Essafi, Meditter. J. Chem., 5, 493 (2016); https://doi.org/10.13171/mjc54/01606170930/essafi.
- L. Antonov, G. Gergov, V. Petrov, M. Kubista and J. Nygren, Talanta, 49, 99 (1999); https://doi.org/10.1016/S0039-9140(98)00348-8.
- D. Heger, J. Jirkovski and P. Klan, J. Phys. Chem. A, 109, 6702 (2005); https://doi.org/10.1021/jp050439j.
- K. Patil, R. Pawar and P. Talap, Phys. Chem. Chem. Phys., 2, 4313 (2000); https://doi.org/10.1039/B005370H.
- A.X. D’mello, T.V. Sylvester, V. Ramya, F.P. Britto, P.K. Shetty and S. Jasphin, Int. J. Adv. Health Sci., 2, 12 (2016).
- R.B. McKay and P.J. Hillson, Faraday Soc., 61, 1800 (1965); https://doi.org/10.1039/tf9656101800.
- M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess and E. Lindahl, SoftwareX, 1-2, 19 (2015); https://doi.org/10.1016/j.softx.2015.06.001.
- K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J.L. Klepeis, R.O. Dror and D.E. Shaw, Proteins, 78, 1950 (2010); https://doi.org/10.1002/prot.22711.
- W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Klein, J. Phys. Chem., 79, 926 (1983); https://doi.org/10.1063/1.445869.
- G. Bussi, D. Donadio and M. Parrinello, J. Phys. Chem., 126, 014101 (2007); https://doi.org/10.1063/1.2408420.
- M. Parrinello and A. Rahman, J. Appl. Phys., 52, 7182 (1981); https://doi.org/10.1063/1.328693.
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L.G. Pedersen, J. Chem. Phys., 103, 8577 (1995); https://doi.org/10.1063/1.470117.
- B. Hess, H. Bekker, H.J.C. Berendsen and J.G. Fraaije, J. Comput. Chem., 18, 1463 (1997); https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AIDJCC4>3.0.CO;2-H.
- E. Fosso-Kankeu and L. Simelane, Kinetic Study of Methylene Blue Removal by Gram-Negative and Gram-Positive Bacteria, International Conference on Chemical, Mining and Metallurgical Engineering CMME’2013, Johannesburg, South Africa (2013).
- F. Ogata, N. Nagai and N. Kawasaki, Chem. Pharm. Bull. (Tokyo), 65, 268 (2017); https://doi.org/10.1248/cpb.c16-00827.
- B.C. Myhr and J.G. Foss, Biopolymers, 4, 949 (1966); https://doi.org/10.1002/bip.1966.360040810.
- M.K. Goftar, K. Moradi and N.M. Kor, Eur. J. Exp. Biol., 4, 72 (2014).
- E.K. Golz and D.A. Vander Griend, Anal. Chem., 85, 1240 (2013); https://doi.org/10.1021/ac303271m.
- S. Jockusch, N.J. Turro and D.A. Tomalia, Macromolecules, 28, 7416 (1995); https://doi.org/10.1021/ma00126a020.
- E. Braswell, J. Phys. Chem., 72, 2477 (1968); https://doi.org/10.1021/j100853a035.
- J.S. Moore, G.O. Phillips, D.M. Power and J.V. Davies, J. Chem. Soc. A, 1155 (1970); https://doi.org/10.1039/J19700001155.
- E. Coates, Color. Technol., 85, 355 (1969).
- Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu and Z. Wu, Chem. Eng. J., 228, 392 (2013); https://doi.org/10.1016/j.cej.2013.04.116.
- B. Heyne, Photochem. Photobiol. Sci., 15, 1103 (2016); https://doi.org/10.1039/C6PP00221H.
- D. Sarkar, P. Das, S. Basak and N. Chattopadhyay, J. Phys. Chem. B, 112, 9243 (2008); https://doi.org/10.1021/jp801659d.
- S. Datta, C. Mukhopadhyay and S.K. Bose, Bull. Chem. Soc. Jpn., 76, 1729 (2003); https://doi.org/10.1246/bcsj.76.1729.
- A. Wallqvist, D.G. Covell and D. Thirumalai, J. Am. Chem. Soc., 120, 427 (1998); https://doi.org/10.1021/ja972053v.
- P. Mukerjee and A.K. Ghosh, J. Am. Chem. Soc., 92, 6419 (1970); https://doi.org/10.1021/ja00725a006.
- G.N. Lewis, O. Goldschmid, T.T. Magel and J. Bigeleisen, J. Am. Chem. Soc., 65, 1150 (1943); https://doi.org/10.1021/ja01246a037.
- J.R. Lakowicz, Quenching of Fluorescence in Principles of Fluorescence Spectroscopy, Springer, Boston: USA, edn 3 (2006).
- R.V. Mannige, PeerJ, 5, e3327 (2017); https://doi.org/10.7717/peerj.3327.
References
I.R. Khalil, V.U. Irorere, I. Radecka, A.T.H. Burns, M. Kowalczuk, J.L. Mason and M.P. Khechara, Materials, 9, 28 (2016); https://doi.org/10.3390/ma9010028.
H. Kubota, Y. Nambu and T. Endo, J. Polym. Sci. A Polym. Chem., 34, 1347 (1996); https://doi.org/10.1002/(SICI)1099-0518(199605)34:7<1347::AIDPOLA24>3.0.CO;2-8.
I. Bajaj and R. Singhal, Bioresour. Technol., 102, 5551 (2011); https://doi.org/10.1016/j.biortech.2011.02.047.
W. Zeng, Y. Lin, Z. Qi, Y. He, D. Wang, G. Chen and Z. Liang, Appl. Microbiol. Biotechnol., 97, 2163 (2013); https://doi.org/10.1007/s00253-013-4717-0.
Y. Ogawa, F. Yamaguchi, K. Yuasa and Y. Tahara, Biosci. Biotechnol. Biochem., 61, 1684 (1997); https://doi.org/10.1271/bbb.61.1684.
G.A. Birrer, A.M. Cromwick and R.A. Gross, Int. J. Biol. Macromol., 16, 265 (1994); https://doi.org/10.1016/0141-8130(94)90032-9.
P.M. Chatterjee, S. Datta, D.P. Tiwari, R. Raval and A.K. Dubey, Appl. Biochem. Biotechnol., 185, 270 (2018); https://doi.org/10.1007/s12010-017-2654-6.
J.A. Bergeron and M. Singer, J. Cell Biol., 4, 433 (1958); https://doi.org/10.1083/jcb.4.4.433.
F. Yamaguchi, Y. Ogawa, M. Kikuchi, K. Yuasa and H. Motai, Biosci. Biotechnol. Biochem., 60, 255 (1996); https://doi.org/10.1271/bbb.60.255.
B.S. Inbaraj and B.H. Chen, Bioresour. Technol., 102, 8868 (2011); https://doi.org/10.1016/j.biortech.2011.06.079.
B.S. Inbaraj, C.P. Chiu, G.H. Ho, J. Yang and B.H. Chen, J. Hazard. Mater., 137, 226 (2006); https://doi.org/10.1016/j.jhazmat.2006.01.057.
P.A. Tafulo, R.B. Queirós and G. González-Aguilar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 73, 295 (2009); https://doi.org/10.1016/j.saa.2009.02.033.
B. Liu, L. Wen, K. Nakata, X. Zhao, S. Liu, T. Ochiai, T. Murakami and A. Fujishima, Eur. Chem. J., 18, 12705 (2012); https://doi.org/10.1002/chem.201200178.
S.B. Mahmoud, A.H. Hamzaoui and W. Essafi, Meditter. J. Chem., 5, 493 (2016); https://doi.org/10.13171/mjc54/01606170930/essafi.
L. Antonov, G. Gergov, V. Petrov, M. Kubista and J. Nygren, Talanta, 49, 99 (1999); https://doi.org/10.1016/S0039-9140(98)00348-8.
D. Heger, J. Jirkovski and P. Klan, J. Phys. Chem. A, 109, 6702 (2005); https://doi.org/10.1021/jp050439j.
K. Patil, R. Pawar and P. Talap, Phys. Chem. Chem. Phys., 2, 4313 (2000); https://doi.org/10.1039/B005370H.
A.X. D’mello, T.V. Sylvester, V. Ramya, F.P. Britto, P.K. Shetty and S. Jasphin, Int. J. Adv. Health Sci., 2, 12 (2016).
R.B. McKay and P.J. Hillson, Faraday Soc., 61, 1800 (1965); https://doi.org/10.1039/tf9656101800.
M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess and E. Lindahl, SoftwareX, 1-2, 19 (2015); https://doi.org/10.1016/j.softx.2015.06.001.
K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J.L. Klepeis, R.O. Dror and D.E. Shaw, Proteins, 78, 1950 (2010); https://doi.org/10.1002/prot.22711.
W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Klein, J. Phys. Chem., 79, 926 (1983); https://doi.org/10.1063/1.445869.
G. Bussi, D. Donadio and M. Parrinello, J. Phys. Chem., 126, 014101 (2007); https://doi.org/10.1063/1.2408420.
M. Parrinello and A. Rahman, J. Appl. Phys., 52, 7182 (1981); https://doi.org/10.1063/1.328693.
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L.G. Pedersen, J. Chem. Phys., 103, 8577 (1995); https://doi.org/10.1063/1.470117.
B. Hess, H. Bekker, H.J.C. Berendsen and J.G. Fraaije, J. Comput. Chem., 18, 1463 (1997); https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AIDJCC4>3.0.CO;2-H.
E. Fosso-Kankeu and L. Simelane, Kinetic Study of Methylene Blue Removal by Gram-Negative and Gram-Positive Bacteria, International Conference on Chemical, Mining and Metallurgical Engineering CMME’2013, Johannesburg, South Africa (2013).
F. Ogata, N. Nagai and N. Kawasaki, Chem. Pharm. Bull. (Tokyo), 65, 268 (2017); https://doi.org/10.1248/cpb.c16-00827.
B.C. Myhr and J.G. Foss, Biopolymers, 4, 949 (1966); https://doi.org/10.1002/bip.1966.360040810.
M.K. Goftar, K. Moradi and N.M. Kor, Eur. J. Exp. Biol., 4, 72 (2014).
E.K. Golz and D.A. Vander Griend, Anal. Chem., 85, 1240 (2013); https://doi.org/10.1021/ac303271m.
S. Jockusch, N.J. Turro and D.A. Tomalia, Macromolecules, 28, 7416 (1995); https://doi.org/10.1021/ma00126a020.
E. Braswell, J. Phys. Chem., 72, 2477 (1968); https://doi.org/10.1021/j100853a035.
J.S. Moore, G.O. Phillips, D.M. Power and J.V. Davies, J. Chem. Soc. A, 1155 (1970); https://doi.org/10.1039/J19700001155.
E. Coates, Color. Technol., 85, 355 (1969).
Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu and Z. Wu, Chem. Eng. J., 228, 392 (2013); https://doi.org/10.1016/j.cej.2013.04.116.
B. Heyne, Photochem. Photobiol. Sci., 15, 1103 (2016); https://doi.org/10.1039/C6PP00221H.
D. Sarkar, P. Das, S. Basak and N. Chattopadhyay, J. Phys. Chem. B, 112, 9243 (2008); https://doi.org/10.1021/jp801659d.
S. Datta, C. Mukhopadhyay and S.K. Bose, Bull. Chem. Soc. Jpn., 76, 1729 (2003); https://doi.org/10.1246/bcsj.76.1729.
A. Wallqvist, D.G. Covell and D. Thirumalai, J. Am. Chem. Soc., 120, 427 (1998); https://doi.org/10.1021/ja972053v.
P. Mukerjee and A.K. Ghosh, J. Am. Chem. Soc., 92, 6419 (1970); https://doi.org/10.1021/ja00725a006.
G.N. Lewis, O. Goldschmid, T.T. Magel and J. Bigeleisen, J. Am. Chem. Soc., 65, 1150 (1943); https://doi.org/10.1021/ja01246a037.
J.R. Lakowicz, Quenching of Fluorescence in Principles of Fluorescence Spectroscopy, Springer, Boston: USA, edn 3 (2006).
R.V. Mannige, PeerJ, 5, e3327 (2017); https://doi.org/10.7717/peerj.3327.