Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of New Dihydropyrazoles of Designed Curcumin Analogues
Corresponding Author(s) : Vishwa Deepak Tripathi
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Present work demonstrates a facile synthesis of a series of 20 dihydropyrazole derivatives from well designed curcumin analogues by reaction of chalcone derivatives with phenylhydrazine. All the synthesized compounds were characterized by spectroscopic (1H and 13C NMR, IR spectra), spectrometric (Mass spectra) data and elemental analysis. Synthesized dihydropyrazoles have diversity points on attached phenyl ring. Effect of substituent on reactivity was explained on the basis of electronic effect generated due to groups on phenyl ring. Presence of dd (double doublet) in 1H NMR spectrum of dihydropyrazoles was also explained due to presence of optically active carbon of pyrazole ring.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Gomtsyan, Heterocycl. Comp., 48, 7 (2012); https://doi.org/10.1007/s10593-012-0960-z.
- R. Dua, S. Shrivastava, S.K. Sonmane and S.K. Shrivastava, Adv. Biol. Res. (Faisalabad), 5, 120 (2011).
- L. Knorr, Chem. Ber., 16, 2597 (1883); https://doi.org/10.1002/cber.188301602194.
- T. Eicher, S. Hauptmann and A. Speicher, The Structure of Heterocyclic Compounds in the Chemistry of Heterocyclic Structure Syntehsis and Applications, Wielly-VCH: Weinheim, Germany, edn. 3, pp. 1-4 (2012).
- N.M. Abd El-Salam, M.S. Mostafa, G.A. Ahmed and O.Y. Alothman, J. Chem., 2013, Article ID 890617 (2013); https://doi.org/10.1155/2013/890617.
- M. Azab, M. Youssef and E. El-Bordany, Molecules, 18, 832 (2013); https://doi.org/10.3390/molecules18010832.
- X. Cao, Z. Sun, Y. Cao, R. Wang, T. Cai, W. Chu, W. Hu and Y. Yang, J. Med. Chem., 57, 3687 (2014); https://doi.org/10.1021/jm4016284.
- A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A.
- S. Fustero, M. Sánchez-Roselló, P. Barrio and A. Simón-Fuentes, Chem. Rev., 111, 6984 (2011); https://doi.org/10.1021/cr2000459.
- Y.-T. Wang, T.-Q. Shi, H.-L. Zhu and C.-H. Liu, Bioorg. Med. Chem., 27, 502 (2019); https://doi.org/10.1016/j.bmc.2018.12.031.
- T. Nakahata, K. Tokumaru, Y. Ito, N. Ishii, M. Setoh, Y. Shimizu, T. Harasawa, K. Aoyama, T. Hamada, M. Kori and K. Aso, Bioorg. Med. Chem., 26, 1598 (2018); https://doi.org/10.1016/j.bmc.2018.02.005.
- L.-W. Zheng, L.-L. Wu, B.-X. Zhao, W.-L. Dong and J.-Y. Miao, Bioorg. Med. Chem., 17, 1957 (2009); https://doi.org/10.1016/j.bmc.2009.01.037.
- M. Bonesi, M.R. Loizzo, G.A. Statti, S. Michel, F. Tillequin and F. Menichini, Bioorg. Med. Chem., 20, 1990 (2010); https://doi.org/10.1016/j.bmcl.2010.01.113.
- B.P. Bandgar, S.S. Gawande, R.G. Bodade, N.M. Gawande and C.N. Khobragade, Bioorg. Med. Chem., 17, 8168 (2009); https://doi.org/10.1016/j.bmc.2009.10.035.
- A.M. Isloor, B. Kalluraya and P. Shetty, Eur. J. Med. Chem., 44, 3784 (2009); https://doi.org/10.1016/j.ejmech.2009.04.038.
- W. Cunico, C.A. Cechinel, H.G. Bonacorso, M.A.P. Martins, N. Zanatta, M.V.N. de Souza, I.O. Freitas, R.P.P. Soares and A.U. Krettli, Bioorg. Med. Chem. Lett., 16, 649 (2006); https://doi.org/10.1016/j.bmcl.2005.10.033.
- S. Mishra, K. Karmodiya, N. Surolia and A. Surolia, Bioorg. Med. Chem., 16, 2894 (2008); https://doi.org/10.1016/j.bmc.2007.12.054.
- S. Shu, A. Dai, J. Wang, B. Wang, Y. Feng, J. Li, X. Cai, D. Yang, D. Ma, M.-W. Wang and H. Liu, Bioorg. Med. Chem., 26, 1896 (2018); https://doi.org/10.1016/j.bmc.2018.02.036.
- J.-B. Liu, F.-Y. Li, J.-Y. Dong, Y.-X. Li, X.-L. Zhang, Y.-H. Wang, L.- X. Xiong and Z.-M. Li, Bioorg. Med. Chem., 26, 3541 (2018); https://doi.org/10.1016/j.bmc.2018.05.028.
- S. Shishodia, M.M. Chaturvedi and B.B. Aggarwal, Curr. Probl. Cancer, 31, 243 (2007); https://doi.org/10.1016/j.currproblcancer.2007.04.001.
- J. Devassy, I. Nwachukwu and P. Jones, Nutr. Rev., 73, 155 (2015); https://doi.org/10.1093/nutrit/nuu064.
- V.D. Tripathi and A.M. Jha, J. Biol. Chem. Chron., 4, 59 (2018).
- A. Sharma, B. Chakravarti, M.P. Gupt, J.A. Siddiqui, R. Konwar and R.P. Tripathi, Bioorg. Med. Chem., 18, 4711 (2010); https://doi.org/10.1016/j.bmc.2010.05.015.
- R.A. Sharma, A.J. Gescher and W. Steward, Eur. J. Cancer, 41, 1955 (2005); https://doi.org/10.1016/j.ejca.2005.05.009.
- V.D. Tripathi and A.K. Shukla, Asian J. Org. Med. Chem., 3, 164 (2018); https://doi.org/10.14233/ajomc.2018.AJOMC-P149.
References
A. Gomtsyan, Heterocycl. Comp., 48, 7 (2012); https://doi.org/10.1007/s10593-012-0960-z.
R. Dua, S. Shrivastava, S.K. Sonmane and S.K. Shrivastava, Adv. Biol. Res. (Faisalabad), 5, 120 (2011).
L. Knorr, Chem. Ber., 16, 2597 (1883); https://doi.org/10.1002/cber.188301602194.
T. Eicher, S. Hauptmann and A. Speicher, The Structure of Heterocyclic Compounds in the Chemistry of Heterocyclic Structure Syntehsis and Applications, Wielly-VCH: Weinheim, Germany, edn. 3, pp. 1-4 (2012).
N.M. Abd El-Salam, M.S. Mostafa, G.A. Ahmed and O.Y. Alothman, J. Chem., 2013, Article ID 890617 (2013); https://doi.org/10.1155/2013/890617.
M. Azab, M. Youssef and E. El-Bordany, Molecules, 18, 832 (2013); https://doi.org/10.3390/molecules18010832.
X. Cao, Z. Sun, Y. Cao, R. Wang, T. Cai, W. Chu, W. Hu and Y. Yang, J. Med. Chem., 57, 3687 (2014); https://doi.org/10.1021/jm4016284.
A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A.
S. Fustero, M. Sánchez-Roselló, P. Barrio and A. Simón-Fuentes, Chem. Rev., 111, 6984 (2011); https://doi.org/10.1021/cr2000459.
Y.-T. Wang, T.-Q. Shi, H.-L. Zhu and C.-H. Liu, Bioorg. Med. Chem., 27, 502 (2019); https://doi.org/10.1016/j.bmc.2018.12.031.
T. Nakahata, K. Tokumaru, Y. Ito, N. Ishii, M. Setoh, Y. Shimizu, T. Harasawa, K. Aoyama, T. Hamada, M. Kori and K. Aso, Bioorg. Med. Chem., 26, 1598 (2018); https://doi.org/10.1016/j.bmc.2018.02.005.
L.-W. Zheng, L.-L. Wu, B.-X. Zhao, W.-L. Dong and J.-Y. Miao, Bioorg. Med. Chem., 17, 1957 (2009); https://doi.org/10.1016/j.bmc.2009.01.037.
M. Bonesi, M.R. Loizzo, G.A. Statti, S. Michel, F. Tillequin and F. Menichini, Bioorg. Med. Chem., 20, 1990 (2010); https://doi.org/10.1016/j.bmcl.2010.01.113.
B.P. Bandgar, S.S. Gawande, R.G. Bodade, N.M. Gawande and C.N. Khobragade, Bioorg. Med. Chem., 17, 8168 (2009); https://doi.org/10.1016/j.bmc.2009.10.035.
A.M. Isloor, B. Kalluraya and P. Shetty, Eur. J. Med. Chem., 44, 3784 (2009); https://doi.org/10.1016/j.ejmech.2009.04.038.
W. Cunico, C.A. Cechinel, H.G. Bonacorso, M.A.P. Martins, N. Zanatta, M.V.N. de Souza, I.O. Freitas, R.P.P. Soares and A.U. Krettli, Bioorg. Med. Chem. Lett., 16, 649 (2006); https://doi.org/10.1016/j.bmcl.2005.10.033.
S. Mishra, K. Karmodiya, N. Surolia and A. Surolia, Bioorg. Med. Chem., 16, 2894 (2008); https://doi.org/10.1016/j.bmc.2007.12.054.
S. Shu, A. Dai, J. Wang, B. Wang, Y. Feng, J. Li, X. Cai, D. Yang, D. Ma, M.-W. Wang and H. Liu, Bioorg. Med. Chem., 26, 1896 (2018); https://doi.org/10.1016/j.bmc.2018.02.036.
J.-B. Liu, F.-Y. Li, J.-Y. Dong, Y.-X. Li, X.-L. Zhang, Y.-H. Wang, L.- X. Xiong and Z.-M. Li, Bioorg. Med. Chem., 26, 3541 (2018); https://doi.org/10.1016/j.bmc.2018.05.028.
S. Shishodia, M.M. Chaturvedi and B.B. Aggarwal, Curr. Probl. Cancer, 31, 243 (2007); https://doi.org/10.1016/j.currproblcancer.2007.04.001.
J. Devassy, I. Nwachukwu and P. Jones, Nutr. Rev., 73, 155 (2015); https://doi.org/10.1093/nutrit/nuu064.
V.D. Tripathi and A.M. Jha, J. Biol. Chem. Chron., 4, 59 (2018).
A. Sharma, B. Chakravarti, M.P. Gupt, J.A. Siddiqui, R. Konwar and R.P. Tripathi, Bioorg. Med. Chem., 18, 4711 (2010); https://doi.org/10.1016/j.bmc.2010.05.015.
R.A. Sharma, A.J. Gescher and W. Steward, Eur. J. Cancer, 41, 1955 (2005); https://doi.org/10.1016/j.ejca.2005.05.009.
V.D. Tripathi and A.K. Shukla, Asian J. Org. Med. Chem., 3, 164 (2018); https://doi.org/10.14233/ajomc.2018.AJOMC-P149.