Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Growth and Characterization of New Promising Organic Non-Linear Optical Crystal: L-Alanine Alaninium Nitrate
Corresponding Author(s) : R. Uvarani
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
A relative study on pure L-alanine alaninium nitrate (LAAN) single crystals and doped with lanthanum oxide, urea and glycine were developed from fluid solution by slow evaporation strategy at room temperature. X-ray diffraction result reveals that LAAN crystallites with system with space bunch P21 and cell parameters a = 7.836 Å, b = 5.428 Å, c = 12.809 Å and β = 94.25°. These parameters were marginally changes for doped crystals compared to pure LAAN crystal. The UV results recommend that the great transmission property of the doped LAAN crystal within the whole visible region guarantees its reasonableness for second harmonic generation applications. The presence of dopants within the LAAN crystal was further affirmed through ICP studies. The functional groups were analyzed through Fourier change infrared spectra investigation. The microhardness and dielectric study at 100 Hz was found to be broadly higher than that of pristine LAAN. The AC conductivity was found to extend after doping due to the induced defects in crystal lattice. The grown crystals were also subjected to second harmonic generation efficiency tests and it was found to be La2O3 doped LAAN crystal is 2.8 times greater than that of potassium dihydrogen phosphate (KDP).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.B. de Araújo, A.S.L. Gomes and G. Boudebs, Rep. Prog. Phys., 79, 036401 (2016); https://doi.org/10.1088/0034-4885/79/3/036401.
- S.R. Mardera, Chem. Commun., 131 (2006); https://doi.org/10.1039/B512646K.
- J. Badan, R. Hierle, A. Perigaud and J. Zyss, ed.: D.J. Williams, American Chemical Society, Washington, DC (1993).
- M.L. Caroline, M. Prakash, D. Geetha and S. Vasudevan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1936 (2011); https://doi.org/10.1016/j.saa.2011.05.094.
- M.L. Caroline, R. Sankar, R.M. Indirani and S. Vasudevan, Mater. Chem. Phys., 1, 114 (2009).
- S. Boomadevi and K. Pandiyan, Physica B, 432, 67 (2014); https://doi.org/10.1016/j.physb.2013.09.048.
- M. Vimalan, X.H. Flora, S. Tamilselvan, R. Jeyasekaran, P. Sagayaraj and C.K. Mahadevan, Arch. Phys. Res., 1, 44 (2010).
- A.S.J. Lucia Rose, P. Selvarajan and S. Perumal, Mater. Chem. Phys., 130, 950 (2011); https://doi.org/10.1016/j.matchemphys.2011.08.022.
- J.J. Rodrigues Jr., L. Misoguti, F.D. Nunes, C.R. Mendonca and S.C. Zilio, Opt. Mater., 22, 235 (2003); https://doi.org/10.1016/S0925-3467(02)00270-7.
- R.M. Kumar, D. Rajan Babu, D. Jayaraman, R. Jayavel and K. Kitamura, J. Cryst. Growth, 275, 1935 (2005); https://doi.org/10.1016/j.jcrysgro.2004.11.260.
- K. Sethuraman, R. Ramesh Babu, R. Gopalakrishnan and P. Ramasamy, Cryst. Growth Des., 8, 1863 (2008); https://doi.org/10.1021/cg700965d.
- M.L. Caroline and S. Vasudevan, Mater. Lett., 62, 2245 (2008); https://doi.org/10.1016/j.matlet.2007.11.059.
- A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan and P. Ramasamy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 297 (2008); https://doi.org/10.1016/j.saa.2007.12.023.
- A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan and P. Ramasamy, Cryst. Res. Technol., 42, 1097 (2007); https://doi.org/10.1002/crat.200710954.
- J.G. Arul Raj, P. Selvarajan, S. Perumal and N. Murali Krishnan, Mater. Manuf. Process., 26, 1254 (2011); https://doi.org/10.1080/10426914.2010.544823.
- R.S. Periathai and K. Rajagopal, IOSR J. Appl. Phys., 6, 9 (2014); https://doi.org/10.9790/4861-06430912.
- S.S. Roy and J.P. Gilberto, J. Optoelectron. Adv. Mater., 12, 1479 (2010).
- R.K. Nath, S.S. Nath and K. Sunar, J. Anal. Sci. Technol., 3, 85 (2012); https://doi.org/10.5355/JAST.2012.85.
- R. Uthrakumar, C. Vesta, C.J. Raj, S. Krishnan and S.J. Das, Curr. Appl. Phys., 10, 548 (2010); https://doi.org/10.1016/j.cap.2009.07.018.
- R. Parimaladevi, C. Sekar and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 617 (2010); https://doi.org/10.1016/j.saa.2009.11.027.
- R. Parimaladevi and C. Sekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 490 (2010); https://doi.org/10.1016/j.saa.2010.04.008.
- V. Chithambaram, S.J. Das, R.A. Nambi, K. Srinivasan and S. Krishnan, Physica B, 405, 2605 (2010); https://doi.org/10.1016/j.physb.2010.03.004.
- P. Selvarajan, J. Glorium Arulraj and S. Perumal, Physica B, 405, 738 (2010); https://doi.org/10.1016/j.physb.2009.09.097.
- S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
References
C.B. de Araújo, A.S.L. Gomes and G. Boudebs, Rep. Prog. Phys., 79, 036401 (2016); https://doi.org/10.1088/0034-4885/79/3/036401.
S.R. Mardera, Chem. Commun., 131 (2006); https://doi.org/10.1039/B512646K.
J. Badan, R. Hierle, A. Perigaud and J. Zyss, ed.: D.J. Williams, American Chemical Society, Washington, DC (1993).
M.L. Caroline, M. Prakash, D. Geetha and S. Vasudevan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1936 (2011); https://doi.org/10.1016/j.saa.2011.05.094.
M.L. Caroline, R. Sankar, R.M. Indirani and S. Vasudevan, Mater. Chem. Phys., 1, 114 (2009).
S. Boomadevi and K. Pandiyan, Physica B, 432, 67 (2014); https://doi.org/10.1016/j.physb.2013.09.048.
M. Vimalan, X.H. Flora, S. Tamilselvan, R. Jeyasekaran, P. Sagayaraj and C.K. Mahadevan, Arch. Phys. Res., 1, 44 (2010).
A.S.J. Lucia Rose, P. Selvarajan and S. Perumal, Mater. Chem. Phys., 130, 950 (2011); https://doi.org/10.1016/j.matchemphys.2011.08.022.
J.J. Rodrigues Jr., L. Misoguti, F.D. Nunes, C.R. Mendonca and S.C. Zilio, Opt. Mater., 22, 235 (2003); https://doi.org/10.1016/S0925-3467(02)00270-7.
R.M. Kumar, D. Rajan Babu, D. Jayaraman, R. Jayavel and K. Kitamura, J. Cryst. Growth, 275, 1935 (2005); https://doi.org/10.1016/j.jcrysgro.2004.11.260.
K. Sethuraman, R. Ramesh Babu, R. Gopalakrishnan and P. Ramasamy, Cryst. Growth Des., 8, 1863 (2008); https://doi.org/10.1021/cg700965d.
M.L. Caroline and S. Vasudevan, Mater. Lett., 62, 2245 (2008); https://doi.org/10.1016/j.matlet.2007.11.059.
A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan and P. Ramasamy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 297 (2008); https://doi.org/10.1016/j.saa.2007.12.023.
A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan and P. Ramasamy, Cryst. Res. Technol., 42, 1097 (2007); https://doi.org/10.1002/crat.200710954.
J.G. Arul Raj, P. Selvarajan, S. Perumal and N. Murali Krishnan, Mater. Manuf. Process., 26, 1254 (2011); https://doi.org/10.1080/10426914.2010.544823.
R.S. Periathai and K. Rajagopal, IOSR J. Appl. Phys., 6, 9 (2014); https://doi.org/10.9790/4861-06430912.
S.S. Roy and J.P. Gilberto, J. Optoelectron. Adv. Mater., 12, 1479 (2010).
R.K. Nath, S.S. Nath and K. Sunar, J. Anal. Sci. Technol., 3, 85 (2012); https://doi.org/10.5355/JAST.2012.85.
R. Uthrakumar, C. Vesta, C.J. Raj, S. Krishnan and S.J. Das, Curr. Appl. Phys., 10, 548 (2010); https://doi.org/10.1016/j.cap.2009.07.018.
R. Parimaladevi, C. Sekar and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 617 (2010); https://doi.org/10.1016/j.saa.2009.11.027.
R. Parimaladevi and C. Sekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 490 (2010); https://doi.org/10.1016/j.saa.2010.04.008.
V. Chithambaram, S.J. Das, R.A. Nambi, K. Srinivasan and S. Krishnan, Physica B, 405, 2605 (2010); https://doi.org/10.1016/j.physb.2010.03.004.
P. Selvarajan, J. Glorium Arulraj and S. Perumal, Physica B, 405, 738 (2010); https://doi.org/10.1016/j.physb.2009.09.097.
S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.