Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Precursors on Structural and Optical Properties of Sol-Gel Synthesized ZnO Nanopowders
Corresponding Author(s) : A. Vanaja
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
The present work aims at evaluating the outcome of zinc precursors on the crystal structure, shape, surface and optical properties of ZnO nanopowders. Zinc oxide nanopowders are fabricated via simple, cost-effective, low-temperature, the sol-gel method using different zinc precursors such as zinc nitrate and zinc chloride. The structural properties of the obtained ZnO nanopowders are studied using X-ray diffraction spectra and their morphology from SEM micrographs. Further, Fourier transform infrared spectra reveals the existence of functional groups that supports the formation of zinc oxide. Moreover, optical absorption and emission of ZnO nanopowders were evaluate during ultraviolet-visible and photoluminescence spectra. The results of this study revealed that the precursor is significant in altering the crystallite size, shape, optical absorption and emission entities of nanopowders. In addition, the role of zinc precursors to fabricate nanopowders that is suitable for various optoelectronic device applications were also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ali, I. Khan, S.A. Khan, M. Sohail, R. Ahmed, A. Rehman, M.S. Ur Ansari and M.A. Morsy, J. Electroanal. Chem., 795, 17 (2017); https://doi.org/10.1016/j.jelechem.2017.04.040.
- H.-S. Chen, P. Yang, Z.H. Khan, J.M. Wu, G. Li and A.R. Kamali, J. Nanomater., 2015, 371679 (2015); https://doi.org/10.1155/2015/371679.
- U. Ozgur, D. Hofstetter and H. Morkoc, Proc. IEEE, 98, 1255 (2010); https://doi.org/10.1109/JPROC.2010.2044550.
- P.R. Solanki, A. Kaushik, V.V. Agrawal and B.D. Malhotra, NPG Asia Mater., 3, 17 (2011); https://doi.org/10.1038/asiamat.2010.137.
- A. Janotti and C.G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009); https://doi.org/10.1088/0034-4885/72/12/126501.
- A. Al-Mohammad, R. Darwich, M. Rukiah, S.A. Shaker and M. Kakhia, Acta Phys. Pol. A, 125, 131 (2014); https://doi.org/10.12693/APhysPolA.125.131.
- W.J.E. Beek, M.M. Wienk and R.A.J. Janssen, Adv. Mater., 16, 1009 (2004); https://doi.org/10.1002/adma.200306659.
- S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita and A. Neogi, J. Nanosci. Nanotechnol., 10, 1707 (2010); https://doi.org/10.1166/jnn.2010.2044.
- N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarafaj, N. Zahed and S. Habib, Int. J. Nanomedicine, 6, 863 (2011); https://doi.org/10.2147/IJN.S18267.
- A.N.P. Madathil, K.A. Vanaja and M.K. Jayaraj, Proc. SPIE, 6639, 66390J (2007); https://doi.org/10.1117/12.730364.
- H.R. Ghorbani, F. Mehr, H. Pazoki and B. Rahmani, Orient. J. Chem., 31, 1219 (2015); https://doi.org/10.13005/ojc/310281.
- P.-C. Chou, H.-I. Chen, I.-P. Liu, C.-C. Chen, J.-K. Liou, C.-J. Lai and W.-C. Liu, IEEE Sens. J., 15, 3759 (2015); https://doi.org/10.1109/JSEN.2015.2391271.
- S. Sawyer, L. Qin and C. Shing, Int. J. High Speed Electron. Syst., 20, 183 (2011); https://doi.org/10.1142/S0129156411006519.
- F.M. Akwia and P. Watts, Chem. Commun., 54, 13894 (2018); https://doi.org/10.1039/C8CC07427E.
- E. Neshataeva, T. Kümmell, A. Ebbers and G. Bacher, Electron. Lett., 44, 1485 (2008); https://doi.org/10.1049/el:20081841.
- T.V. Kolekar, H.M. Yadav, S.S. Bandgar and P.Y. Deshmukh, Indian Streams Res. J., 1, 1 (2011).
- M.A.M. Moazzen, S.M. Borghei and F. Taleshi, Appl. Nanosci., 3, 295 (2013); https://doi.org/10.1007/s13204-012-0147-z.
- A. Vanaja and K. Srinivasa Rao, Int. J. Adv. Mater. Sci. Eng., 4, 1 (2015).
- M. Gusatti, G.S. Barroso, C.E.M. Campos, D.A.R. Souza, J.A. Rosário, R.B. Lima, C.C. Milioli, L.A. Silva, H.G. Riella and N.C. Kuhnen, Mater. Res., 14, 264 (2011); https://doi.org/10.1590/S1516-14392011005000035.
- A.K. Zak, R. Razali, W.H. Abd Majid and M. Darroudi, Int. J. Nanomed., 6, 1399 (2011); https://doi.org/10.2147/IJN.S19693.
- R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim and A.N. Jassim, Nanosci. Nanotechnol., 5, 1 (2015); https://doi.org/10.5923/j.nn.20150501.01.
- Z.R. Khan, M. Arif and A. Singh, Int. Nano Lett., 2, 22 (2012); https://doi.org/10.1186/2228-5326-2-22.
- P. Bindu and S. Thomas, J. Theoretical Appl. Phys., 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9.
- A. Arora, S. Devi, V. Jaswal, J. Singh, M. Kinger and V. Gupta, Orient. J. Chem., 30, 1671 (2014); https://doi.org/10.13005/ojc/300427.
- J. Mayekar, V. Dhar and S. Radha, Int. J. Res. Eng. Technol., 3, 43 (2014).
References
S. Ali, I. Khan, S.A. Khan, M. Sohail, R. Ahmed, A. Rehman, M.S. Ur Ansari and M.A. Morsy, J. Electroanal. Chem., 795, 17 (2017); https://doi.org/10.1016/j.jelechem.2017.04.040.
H.-S. Chen, P. Yang, Z.H. Khan, J.M. Wu, G. Li and A.R. Kamali, J. Nanomater., 2015, 371679 (2015); https://doi.org/10.1155/2015/371679.
U. Ozgur, D. Hofstetter and H. Morkoc, Proc. IEEE, 98, 1255 (2010); https://doi.org/10.1109/JPROC.2010.2044550.
P.R. Solanki, A. Kaushik, V.V. Agrawal and B.D. Malhotra, NPG Asia Mater., 3, 17 (2011); https://doi.org/10.1038/asiamat.2010.137.
A. Janotti and C.G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009); https://doi.org/10.1088/0034-4885/72/12/126501.
A. Al-Mohammad, R. Darwich, M. Rukiah, S.A. Shaker and M. Kakhia, Acta Phys. Pol. A, 125, 131 (2014); https://doi.org/10.12693/APhysPolA.125.131.
W.J.E. Beek, M.M. Wienk and R.A.J. Janssen, Adv. Mater., 16, 1009 (2004); https://doi.org/10.1002/adma.200306659.
S. John, S. Marpu, J. Li, M. Omary, Z. Hu, Y. Fujita and A. Neogi, J. Nanosci. Nanotechnol., 10, 1707 (2010); https://doi.org/10.1166/jnn.2010.2044.
N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarafaj, N. Zahed and S. Habib, Int. J. Nanomedicine, 6, 863 (2011); https://doi.org/10.2147/IJN.S18267.
A.N.P. Madathil, K.A. Vanaja and M.K. Jayaraj, Proc. SPIE, 6639, 66390J (2007); https://doi.org/10.1117/12.730364.
H.R. Ghorbani, F. Mehr, H. Pazoki and B. Rahmani, Orient. J. Chem., 31, 1219 (2015); https://doi.org/10.13005/ojc/310281.
P.-C. Chou, H.-I. Chen, I.-P. Liu, C.-C. Chen, J.-K. Liou, C.-J. Lai and W.-C. Liu, IEEE Sens. J., 15, 3759 (2015); https://doi.org/10.1109/JSEN.2015.2391271.
S. Sawyer, L. Qin and C. Shing, Int. J. High Speed Electron. Syst., 20, 183 (2011); https://doi.org/10.1142/S0129156411006519.
F.M. Akwia and P. Watts, Chem. Commun., 54, 13894 (2018); https://doi.org/10.1039/C8CC07427E.
E. Neshataeva, T. Kümmell, A. Ebbers and G. Bacher, Electron. Lett., 44, 1485 (2008); https://doi.org/10.1049/el:20081841.
T.V. Kolekar, H.M. Yadav, S.S. Bandgar and P.Y. Deshmukh, Indian Streams Res. J., 1, 1 (2011).
M.A.M. Moazzen, S.M. Borghei and F. Taleshi, Appl. Nanosci., 3, 295 (2013); https://doi.org/10.1007/s13204-012-0147-z.
A. Vanaja and K. Srinivasa Rao, Int. J. Adv. Mater. Sci. Eng., 4, 1 (2015).
M. Gusatti, G.S. Barroso, C.E.M. Campos, D.A.R. Souza, J.A. Rosário, R.B. Lima, C.C. Milioli, L.A. Silva, H.G. Riella and N.C. Kuhnen, Mater. Res., 14, 264 (2011); https://doi.org/10.1590/S1516-14392011005000035.
A.K. Zak, R. Razali, W.H. Abd Majid and M. Darroudi, Int. J. Nanomed., 6, 1399 (2011); https://doi.org/10.2147/IJN.S19693.
R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim and A.N. Jassim, Nanosci. Nanotechnol., 5, 1 (2015); https://doi.org/10.5923/j.nn.20150501.01.
Z.R. Khan, M. Arif and A. Singh, Int. Nano Lett., 2, 22 (2012); https://doi.org/10.1186/2228-5326-2-22.
P. Bindu and S. Thomas, J. Theoretical Appl. Phys., 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9.
A. Arora, S. Devi, V. Jaswal, J. Singh, M. Kinger and V. Gupta, Orient. J. Chem., 30, 1671 (2014); https://doi.org/10.13005/ojc/300427.
J. Mayekar, V. Dhar and S. Radha, Int. J. Res. Eng. Technol., 3, 43 (2014).