Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Silver Nanoparticles by Beta vulgaris (Chard) Extract: Characterization and Antibacterial Activity
Corresponding Author(s) : Amjed Mirza Oda
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
Green synthesis route has been used for preparation of silver nanoparticles (AgNPs) by aqueous extract of chard plant (Beta vulgaris). The extract volume was studied as effected parameter in the synthesis of AgNPs and monitored by UV-visible spectrum according to the surface plasmon resonance band that centered at 417 nm. The silver nanoparticles were characterized by FTIR, XRD and SEM. The FTIR anlysis showed the adsorption of biomolecules on the AgNPs surface acting as reducing and capping agent. The XRD results revealed the presence of cubic face silver metal without trace of another silver oxides, as an indication of stability against oxidation. Also XRD in combination with SEM analysis showed that AgNPs are in the nanometric scale with spherical identical shape, where the route was successful. The silver nanoparticles tested against Streptococcus pneumonia and Escherichia coli, where the inhibition zone was 28 and 33 nm, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Mukherjee, S. Ghosh, S. Majumdar and K. Annapurna, J. Environ. Chem. Eng., 4, 639 (2016); https://doi.org/10.1016/j.jece.2015.12.010.
- S. De Gisi, G. Lofrano, M. Grassi an M. Notarnicola, Sustain. Mater. Technol., 9, 10 (2016); https://doi.org/10.1016/j.susmat.2016.06.002.
- A. Bhatnagar and A.K. Minocha, Indian J. Chem. Technol., 13, 203 (2006).
- F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011.
- K.C. Kang, S.S. Kim, J.W. Choi and S.H. Kwon, J. Ind. Eng. Chem., 14, 131 (2008); https://doi.org/10.1016/j.jiec.2007.08.007.
- A. Jusoh, L. Su Shiung, N. Ali and M.J.M.M. Noor, Desalination, 206, 9 (2007); https://doi.org/10.1016/j.desal.2006.04.048.
- Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Z. Wang and Y. Xia, J. Hazard. Mater., 177, 876 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.114.
- M.I. Kandah and J.L. Meunier, J. Hazard. Mater., 146, 283 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.019.
- Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan and Y. Zhu, Water Res., 39, 605 (2005); https://doi.org/10.1016/j.watres.2004.11.004.
- A. Dabrowski, Z. Hubicki, P. Podkoœcielny and E. Robens, Chemosphere, 56, 91 (2004); https://doi.org/10.1016/j.chemosphere.2004.03.006.
- Z. Ai, Y. Cheng, L. Zhang and J. Qiu, Environ. Sci. Technol., 42, 6955 (2008); https://doi.org/10.1021/es800962m.
- G.Z. Kyzas and M. Kostoglou, Materials, 7, 333 (2014); https://doi.org/10.3390/ma7010333.
- M. Sharma, R.K. Vyas and K. Singh, Adsorption, 19, 161 (2013); https://doi.org/10.1007/s10450-012-9436-9.
- A.S. Ayangbenro and O.O. Babalola, Int. J. Environ. Res. Public Health, 14, 94 (2017); https://doi.org/10.3390/ijerph14010094.
- M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri and C. Fogarassy, Water, 10, 1377 (2018); https://doi.org/10.3390/w10101377.
- M.J.K. Ahmed and M. Ahmaruzzaman, J. Water Process Eng., 10, 39 (2016); https://doi.org/10.1016/j.jwpe.2016.01.014.
- Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh and M.A. Atiehef, Sep. Purif. Technol., 157, 141 (2016); https://doi.org/10.1016/j.seppur.2015.11.039.
- N.S. Bhandari, N.C. Joshi, G.C. Shah and S. Kumar, J. Indian Chem. Soc., 89, 383 (2012).
- A.S. Teja and P.Y. Koh, Prog. Cryst. Growth Charact. Mater., 55, 22 (2009); https://doi.org/10.1016/j.pcrysgrow.2008.08.003.
- T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann and B. von Rechenberg, J. Magn. Magn. Mater., 293, 483 (2005); https://doi.org/10.1016/j.jmmm.2005.01.064.
- I. García-Díaz, F.A. Lopez and F.J. Alguacil, Metals, 8, 914 (2018); https://doi.org/10.3390/met8110914.
- M. Ayyanar and P. Subash-Babu, Asian Pac. J. Trop. Biomed., 2, 240 (2012); https://doi.org/10.1016/S2221-1691(12)60050-1.
- B. Turakhia, P. Turakhia and S. Shah, South-Asian J. Multidiscipl. Stud., 5, 132 (2017).
- S.Z. Mohammadi, M. Khorasani-Motlagh, S. Jahani and M. Yousef, Int. J. Nanosci. Nanotechnol., 8, 87 (2012).
- Y. Liu, J. Luan, C. Zhang, X. Ke and H. Zhang, Environ. Sci. Pollut. Res., 26, 10387 (2019); https://doi.org/10.1007/s11356-019-04459-w.
- Q. Jin, C. Cui, H. Chen, J. Wu, J. Hu, X. Xing, J. Geng and Y. Wu, Front. Environ. Sci. Eng., 13, 16 (2019); https://doi.org/10.1007/s11783-019-1092-9.
References
D. Mukherjee, S. Ghosh, S. Majumdar and K. Annapurna, J. Environ. Chem. Eng., 4, 639 (2016); https://doi.org/10.1016/j.jece.2015.12.010.
S. De Gisi, G. Lofrano, M. Grassi an M. Notarnicola, Sustain. Mater. Technol., 9, 10 (2016); https://doi.org/10.1016/j.susmat.2016.06.002.
A. Bhatnagar and A.K. Minocha, Indian J. Chem. Technol., 13, 203 (2006).
F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011.
K.C. Kang, S.S. Kim, J.W. Choi and S.H. Kwon, J. Ind. Eng. Chem., 14, 131 (2008); https://doi.org/10.1016/j.jiec.2007.08.007.
A. Jusoh, L. Su Shiung, N. Ali and M.J.M.M. Noor, Desalination, 206, 9 (2007); https://doi.org/10.1016/j.desal.2006.04.048.
Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Z. Wang and Y. Xia, J. Hazard. Mater., 177, 876 (2010); https://doi.org/10.1016/j.jhazmat.2009.12.114.
M.I. Kandah and J.L. Meunier, J. Hazard. Mater., 146, 283 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.019.
Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan and Y. Zhu, Water Res., 39, 605 (2005); https://doi.org/10.1016/j.watres.2004.11.004.
A. Dabrowski, Z. Hubicki, P. Podkoœcielny and E. Robens, Chemosphere, 56, 91 (2004); https://doi.org/10.1016/j.chemosphere.2004.03.006.
Z. Ai, Y. Cheng, L. Zhang and J. Qiu, Environ. Sci. Technol., 42, 6955 (2008); https://doi.org/10.1021/es800962m.
G.Z. Kyzas and M. Kostoglou, Materials, 7, 333 (2014); https://doi.org/10.3390/ma7010333.
M. Sharma, R.K. Vyas and K. Singh, Adsorption, 19, 161 (2013); https://doi.org/10.1007/s10450-012-9436-9.
A.S. Ayangbenro and O.O. Babalola, Int. J. Environ. Res. Public Health, 14, 94 (2017); https://doi.org/10.3390/ijerph14010094.
M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri and C. Fogarassy, Water, 10, 1377 (2018); https://doi.org/10.3390/w10101377.
M.J.K. Ahmed and M. Ahmaruzzaman, J. Water Process Eng., 10, 39 (2016); https://doi.org/10.1016/j.jwpe.2016.01.014.
Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh and M.A. Atiehef, Sep. Purif. Technol., 157, 141 (2016); https://doi.org/10.1016/j.seppur.2015.11.039.
N.S. Bhandari, N.C. Joshi, G.C. Shah and S. Kumar, J. Indian Chem. Soc., 89, 383 (2012).
A.S. Teja and P.Y. Koh, Prog. Cryst. Growth Charact. Mater., 55, 22 (2009); https://doi.org/10.1016/j.pcrysgrow.2008.08.003.
T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann and B. von Rechenberg, J. Magn. Magn. Mater., 293, 483 (2005); https://doi.org/10.1016/j.jmmm.2005.01.064.
I. García-Díaz, F.A. Lopez and F.J. Alguacil, Metals, 8, 914 (2018); https://doi.org/10.3390/met8110914.
M. Ayyanar and P. Subash-Babu, Asian Pac. J. Trop. Biomed., 2, 240 (2012); https://doi.org/10.1016/S2221-1691(12)60050-1.
B. Turakhia, P. Turakhia and S. Shah, South-Asian J. Multidiscipl. Stud., 5, 132 (2017).
S.Z. Mohammadi, M. Khorasani-Motlagh, S. Jahani and M. Yousef, Int. J. Nanosci. Nanotechnol., 8, 87 (2012).
Y. Liu, J. Luan, C. Zhang, X. Ke and H. Zhang, Environ. Sci. Pollut. Res., 26, 10387 (2019); https://doi.org/10.1007/s11356-019-04459-w.
Q. Jin, C. Cui, H. Chen, J. Wu, J. Hu, X. Xing, J. Geng and Y. Wu, Front. Environ. Sci. Eng., 13, 16 (2019); https://doi.org/10.1007/s11783-019-1092-9.