Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Antibacterial Investigation of Mn(II) and Co(II) Complexes of Schiffs Base Ligand
Corresponding Author(s) : Sulekh Chandra
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
Complexes of chlorides and acetates of Mn(II) and Co(II) with ligand, 3-[mercapto-[1,3,4]thiadiazol-2-ylimino)-methyl]-benzene-1,2-diol has been synthesized and characterized. The metal complexes so formed were characterized by molar conductance, elemental analysis, mass, EPR, IR and electronic spectral studies. Geometry of the ligand and its metal complexes was optimized by (B3LYP) functional with 6-31G (d,p) basis sets method of the Gaussian 09 W. All the metal complexes were found to be non-electrolytes. Metal complexes are represented as [M(L)2X2] [where L = Schiffs base ligand, M = Mn(II), Co(II) and X = Cl–, CH3COO–]. Octahedral geometry for Mn(II) and Co(II) complexes was determined by means of spectral studies and molecular modelling. Ligand and its metal complexes were screened against three bacteria- P. aeruginosa, S. pyogens and B. subtilis using well diffusion method. Complexes are found to be more potent as compare to the ligand.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.C. Gupta and A.K. Sutar, Coord. Chem. Rev., 252, 1420 (2008); https://doi.org/10.1016/j.ccr.2007.09.005.
- S.C. Bell, G.L. Conklin and S.J. Childress, J. Am. Chem. Soc., 85, 2868 (1963); https://doi.org/10.1021/ja00901a057.
- A.M. Abu Dief and M.A.M. Ibrahim, Beni-Suef J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004.
- C.J. Dhanraj and M.S. Nair, J. Coord. Chem., 62, 4018 (2009); https://doi.org/10.1080/00958970903191142.
- A.K. Mishra, S.B. Mishra, N. Manav and N.K. Kaushik, J. Therm. Anal. Calorim., 90, 509 (2007); https://doi.org/10.1007/s10973-006-7608-0.
- M.S. Alam, J.H. Choi and D.U. Lee, Bioorg. Med. Chem., 20, 4103 (2012); https://doi.org/10.1016/j.bmc.2012.04.058.
- S. Farhadi, F. Mahmoudi and J. Simpson, J. Mol. Struct., 1108, 583 (2016); https://doi.org/10.1016/j.molstruc.2015.12.038.
- M.A. Zayed, M.F. Hawash, M.A. Fahmey and A.M.M. El-Gizouli, J. Therm. Anal. Calorim., 108, 315 (2012); https://doi.org/10.1007/s10973-011-1876-z.
- H.F. Abd El Halim, F.A. Nour El Dien, G.G. Mohamed and N.A. Mohamed, J. Therm. Anal. Calorim., 109, 883 (2012); https://doi.org/10.1007/s10973-011-1784-2.
- M.A. Zayed, G.G. Mohamed and M.A. Fahmey, J. Therm. Anal. Calorim., 107, 763 (2012); https://doi.org/10.1007/s10973-011-1515-8.
- M.S. Refat, G.G. Mohamed, R.F. de Farias, A.K. Powell, M.S. El-Garib, S.A. El-Korashy and M.A. Hussien, J. Therm. Anal. Calorim., 102, 225 (2010); https://doi.org/10.1007/s10973-009-0404-x.
- J.-C.G. Bünzli and G.R. Choppin, Luminescent Probes in Lanthanide Probes in Life, Chemical and Earth Sciences, Elsevier: Amesterdam (1989).
- A. Chaudhary, N. Bansal, A. Gajraj and R.V. Singh, J. Inorg. Biochem., 96, 393 (2003); https://doi.org/10.1016/S0162-0134(03)00157-0.
- M.H. Soliman, G.G. Mohamed and E.A. Mohamed, J. Therm. Anal. Calorim., 99, 647 (2010); https://doi.org/10.1007/s10973-009-0421-9.
- H. von G.A. Melson, Coordination Chemistry of Macrocyclic Compounds, Plenum Press: New York (1979).
- M.K. Sahani, U. Yadava, O.P. Pandey and S.K. Segupta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 94 (2014); https://doi.org/10.1016/j.saa.2014.01.041.
- N.V. Tverdova, E.D. Pelevina, N.I. Giricheva, G.V. Girichev, N.P. Kuzmina and O.V. Kotova, J. Mol. Struct., 1012, 151 (2012); https://doi.org/10.1016/j.molstruc.2011.06.037.
- S. Gaur, Asian J. Chem., 15, 250 (2003).
- E.S. Raper, Coord. Chem. Rev., 129, 91 (1994); https://doi.org/10.1016/0010-8545(94)85019-4.
- S. Chandra and Ruchi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 338 (2013); https://doi.org/10.1016/j.saa.2012.10.065.
- U. Kumar and S. Chandra, Eur. J. Chem., 7, 1238 (2010).
- M.S. Nair, D. Arish and R.S. Joseyphus, J. Saudi Chem. Soc., 16, 83 (2012); https://doi.org/10.1016/j.jscs.2010.11.002.
- H.D. Yin and S.W. Chen, Inorg. Chim. Acta, 359, 3330 (2006); https://doi.org/10.1016/j.ica.2006.03.024.
- S. Chandra, S. Gautam, H.K. Rajor and R. Bhatia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 749 (2015); https://doi.org/10.1016/j.saa.2014.08.046.
- P. Tyagi, S. Chandra, B.S. Saraswat and D. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 143, 1 (2015); https://doi.org/10.1016/j.saa.2015.02.027.
- S. Chandra and A. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 697 (2007); https://doi.org/10.1016/j.saa.2006.07.051.
- A.T.A. El-Karim and A.A. El-Sherif, J. Mol. Liq., 219, 914 (2016); https://doi.org/10.1016/j.molliq.2016.04.005.
- I. Babahan, F. Eyduran, E.P. Coban, N. Orhan, D. Kazar and H. Biyik, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 205 (2014); https://doi.org/10.1016/j.saa.2013.10.040.
- M. Sobiesiak, T. Muziol, M. Rozalski, U. Krajewska and E. Budzisz, New J. Chem., 38, 5349 (2014); https://doi.org/10.1039/C4NJ00977K.
- S. Chandra, Sangeetika, V.P. Tyagi and S. Raizada, Synth. React. Inorg. Met.-Org. Chem., 33, 147 (2003); https://doi.org/10.1081/SIM-120016879.
- M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074.
- G. Kumar, D. Kumar, C.P. Singh, A. Kumar and V.B. Rana, J. Serb. Chem. Soc., 75, 629 (2010); https://doi.org/10.2298/JSC090704037K.
References
K.C. Gupta and A.K. Sutar, Coord. Chem. Rev., 252, 1420 (2008); https://doi.org/10.1016/j.ccr.2007.09.005.
S.C. Bell, G.L. Conklin and S.J. Childress, J. Am. Chem. Soc., 85, 2868 (1963); https://doi.org/10.1021/ja00901a057.
A.M. Abu Dief and M.A.M. Ibrahim, Beni-Suef J. Basic Appl. Sci., 4, 119 (2015); https://doi.org/10.1016/j.bjbas.2015.05.004.
C.J. Dhanraj and M.S. Nair, J. Coord. Chem., 62, 4018 (2009); https://doi.org/10.1080/00958970903191142.
A.K. Mishra, S.B. Mishra, N. Manav and N.K. Kaushik, J. Therm. Anal. Calorim., 90, 509 (2007); https://doi.org/10.1007/s10973-006-7608-0.
M.S. Alam, J.H. Choi and D.U. Lee, Bioorg. Med. Chem., 20, 4103 (2012); https://doi.org/10.1016/j.bmc.2012.04.058.
S. Farhadi, F. Mahmoudi and J. Simpson, J. Mol. Struct., 1108, 583 (2016); https://doi.org/10.1016/j.molstruc.2015.12.038.
M.A. Zayed, M.F. Hawash, M.A. Fahmey and A.M.M. El-Gizouli, J. Therm. Anal. Calorim., 108, 315 (2012); https://doi.org/10.1007/s10973-011-1876-z.
H.F. Abd El Halim, F.A. Nour El Dien, G.G. Mohamed and N.A. Mohamed, J. Therm. Anal. Calorim., 109, 883 (2012); https://doi.org/10.1007/s10973-011-1784-2.
M.A. Zayed, G.G. Mohamed and M.A. Fahmey, J. Therm. Anal. Calorim., 107, 763 (2012); https://doi.org/10.1007/s10973-011-1515-8.
M.S. Refat, G.G. Mohamed, R.F. de Farias, A.K. Powell, M.S. El-Garib, S.A. El-Korashy and M.A. Hussien, J. Therm. Anal. Calorim., 102, 225 (2010); https://doi.org/10.1007/s10973-009-0404-x.
J.-C.G. Bünzli and G.R. Choppin, Luminescent Probes in Lanthanide Probes in Life, Chemical and Earth Sciences, Elsevier: Amesterdam (1989).
A. Chaudhary, N. Bansal, A. Gajraj and R.V. Singh, J. Inorg. Biochem., 96, 393 (2003); https://doi.org/10.1016/S0162-0134(03)00157-0.
M.H. Soliman, G.G. Mohamed and E.A. Mohamed, J. Therm. Anal. Calorim., 99, 647 (2010); https://doi.org/10.1007/s10973-009-0421-9.
H. von G.A. Melson, Coordination Chemistry of Macrocyclic Compounds, Plenum Press: New York (1979).
M.K. Sahani, U. Yadava, O.P. Pandey and S.K. Segupta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 94 (2014); https://doi.org/10.1016/j.saa.2014.01.041.
N.V. Tverdova, E.D. Pelevina, N.I. Giricheva, G.V. Girichev, N.P. Kuzmina and O.V. Kotova, J. Mol. Struct., 1012, 151 (2012); https://doi.org/10.1016/j.molstruc.2011.06.037.
S. Gaur, Asian J. Chem., 15, 250 (2003).
E.S. Raper, Coord. Chem. Rev., 129, 91 (1994); https://doi.org/10.1016/0010-8545(94)85019-4.
S. Chandra and Ruchi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 338 (2013); https://doi.org/10.1016/j.saa.2012.10.065.
U. Kumar and S. Chandra, Eur. J. Chem., 7, 1238 (2010).
M.S. Nair, D. Arish and R.S. Joseyphus, J. Saudi Chem. Soc., 16, 83 (2012); https://doi.org/10.1016/j.jscs.2010.11.002.
H.D. Yin and S.W. Chen, Inorg. Chim. Acta, 359, 3330 (2006); https://doi.org/10.1016/j.ica.2006.03.024.
S. Chandra, S. Gautam, H.K. Rajor and R. Bhatia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 749 (2015); https://doi.org/10.1016/j.saa.2014.08.046.
P. Tyagi, S. Chandra, B.S. Saraswat and D. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc., 143, 1 (2015); https://doi.org/10.1016/j.saa.2015.02.027.
S. Chandra and A. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 697 (2007); https://doi.org/10.1016/j.saa.2006.07.051.
A.T.A. El-Karim and A.A. El-Sherif, J. Mol. Liq., 219, 914 (2016); https://doi.org/10.1016/j.molliq.2016.04.005.
I. Babahan, F. Eyduran, E.P. Coban, N. Orhan, D. Kazar and H. Biyik, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 205 (2014); https://doi.org/10.1016/j.saa.2013.10.040.
M. Sobiesiak, T. Muziol, M. Rozalski, U. Krajewska and E. Budzisz, New J. Chem., 38, 5349 (2014); https://doi.org/10.1039/C4NJ00977K.
S. Chandra, Sangeetika, V.P. Tyagi and S. Raizada, Synth. React. Inorg. Met.-Org. Chem., 33, 147 (2003); https://doi.org/10.1081/SIM-120016879.
M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074.
G. Kumar, D. Kumar, C.P. Singh, A. Kumar and V.B. Rana, J. Serb. Chem. Soc., 75, 629 (2010); https://doi.org/10.2298/JSC090704037K.