Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Application of TiO2-Bayah Natural Zeolite Composite for Degradation of Ammonia Gas Pollutant
Corresponding Author(s) : Slamet
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
This study aimed to apply the TiO2-zeolite composite material as a photocatalyst in the photodegradation of ammonia gas. TiO2-Bayah natural zeolite was synthesized by slurry method and continued with calcination process at 500 °C for 3 h. The amount of TiO2 varied (5, 10 and 20 % wt) in the total weight of the catalyst to prove the effect of TiO2 loading on the composition, structure and surface area of the composite, as well as the efficiency of ammonia gas degradation. X-ray fluorescence characterization showed the increasing of TiO2 composition of composite materials according to the amount of TiO2 loaded. X-ray diffraction showed that there was no change in the structure of the zeolite before and after combination with TiO2. BET analysis showed that the composite surface area was larger than the zeolite surface area, but the surface area decreased with increasing TiO2 loading. Performance test results showed that TZ5 (5 % TiO2-zeolite) degraded ammonia gas better than other samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Webb, M. Broomfield, S. Jones and B. Donovan, Sci. Total Environ., 470-471, 865 (2014); https://doi.org/10.1016/j.scitotenv.2013.09.091.
- Y. Shavisi, S. Sharifnia, S.N. Hosseini and M.A. Khadivi, J. Ind. Eng. Chem., 20, 278 (2014); https://doi.org/10.1016/j.jiec.2013.03.037.
- D. Saha and S. Deng, J. Chem. Eng. Data, 55, 3312 (2010); https://doi.org/10.1021/je100105z.
- E. Rezaei, B. Schlageter, M. Nemati and B. Predicala, J. Environ. Chem. Eng., 5, 422 (2017); https://doi.org/10.1016/j.jece.2016.12.026.
- S.N. Behera, M. Sharma, V.P. Aneja and R. Balasubramanian, Environ. Sci. Pollut. Res. Int., 20, 8092 (2013); https://doi.org/10.1007/s11356-013-2051-9.
- F.-X. Philippe, J.-F. Cabaraux and B. Nicks, Agric. Ecosyst. Environ., 141, 245 (2011); https://doi.org/10.1016/j.agee.2011.03.012.
- M.T. Gutierrez-Wing and R.F. Malone, Aquacult. Eng., 34, 163 (2006); https://doi.org/10.1016/j.aquaeng.2005.08.003.
- H.-H. Ou, M.R. Hoffmann, C.-H. Liao, J.-H. Hong and S.-L. Lo, Appl. Catal. B, 99, 74 (2010); https://doi.org/10.1016/j.apcatb.2010.06.002.
- M. Darestani, V. Haigh, S.J. Couperthwaite, G.J. Millar and L.D. Nghiem, J. Environ. Chem. Eng., 5, 1349 (2017); https://doi.org/10.1016/j.jece.2017.02.016.
- W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer and J. Economy, Micropor. Mesopor. Mater., 234, 146 (2016); https://doi.org/10.1016/j.micromeso.2016.07.011.
- A. Qajar, M. Peer, M.R. Andalibi, R. Rajagopalan and H.C. Foley, Micropor. Mesopor. Mater., 218, 15 (2015); https://doi.org/10.1016/j.micromeso.2015.06.030.
- Z. Mohammadi, S. Sharifnia and Y. Shavisi, Mater. Chem. Phys., 184, 110 (2016); https://doi.org/10.1016/j.matchemphys.2016.09.031.
- H. Mozzanega, J.M. Herrmann and P. Pichat, J. Phys. Chem., 83, 2251 (1979); https://doi.org/10.1021/j100480a014.
- M. Altomare, G.L. Chiarello, A. Costa, M. Guarino and E. Selli, Chem. Eng. J., 191, 394 (2012); https://doi.org/10.1016/j.cej.2012.03.037.
- Y. Shavisi, S. Sharifnia and Z. Mohamadi, J. Environ. Chem. Eng., 4, 2736 (2016); https://doi.org/10.1016/j.jece.2016.04.035.
- Y. Shaveisi and S. Sharifnia, J. Energy Chem., 27, 290 (2018); https://doi.org/10.1016/j.jechem.2017.06.012.
- A.C. Sola, D. Garzón-Sousa, J. Araña, O. González-Díaz, J.M. DoñaRodríguez, P. Ramírez de la Piscina and N. Homs, Catal. Today, 266, 53 (2016); https://doi.org/10.1016/j.cattod.2015.08.008.
- Y. Dong, Z. Bai, R. Liu and T. Zhu, Catal. Today, 126, 320 (2007); https://doi.org/10.1016/j.cattod.2007.06.034.
- I. Jansson, S. Suárez, F.J. Garcia-Garcia and B. Sánchez, Appl. Catal. B, 178, 100 (2015); https://doi.org/10.1016/j.apcatb.2014.10.022.
- M. Nikaido, S. Furuya, T. Kakui and H. Kamiya, Adv. Powder Technol., 20, 598 (2009);https://doi.org/10.1016/j.apt.2009.10.003.
- N. Tafreshi, S. Sharifnia and S. Moradi Dehaghi, Process Saf. Environ. Prot., 106, 203 (2017); https://doi.org/10.1016/j.psep.2017.01.015.
- Y. Dong, Z. Bai, R. Liu and T. Zhu, Atmos. Environ., 41, 3182 (2007); https://doi.org/10.1016/j.atmosenv.2006.08.056.
- S. Yao, J. Li and Z. Shi, Particuology, 8, 272 (2010); https://doi.org/10.1016/j.partic.2010.03.013.
- A. Alshameri, C. Yan and X. Lei, Micropor. Mesopor. Mater., 196, 145 (2014); https://doi.org/10.1016/j.micromeso.2014.05.008.
- C. Liu, R. Zhang, S. Wei, J. Wang, Y. Liu, M. Li and R. Liu, Fuel, 157, 183 (2015); https://doi.org/10.1016/j.fuel.2015.05.003.
- M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin and J. Wu, Dyes Pigments, 77, 327 (2008); https://doi.org/10.1016/j.dyepig.2007.01.026.
- S. Suárez, M. Yates, P. Avila and J. Blanco, Catal. Today, 105, 499 (2005); https://doi.org/10.1016/j.cattod.2005.06.019.
- M. Takeuchi, M. Hidaka and M. Anpo, J. Hazard. Mater., 237-238, 133 (2012); https://doi.org/10.1016/j.jhazmat.2012.08.011.
- M.R. Eskandarian, M. Fazli, M.H. Rasoulifard and H. Choi, Appl. Catal. B, 183, 407 (2016); https://doi.org/10.1016/j.apcatb.2015.11.004.
- R. Nagarjuna, S. Challagulla, N. Alla, R. Ganesan and S. Roy, Mater. Des., 86, 621 (2015); https://doi.org/10.1016/j.matdes.2015.07.116.
- E. Rezaei, R. Azar, M. Nemati and B. Predicala, J. Environ. Chem. Eng., 5, 5902 (2017); https://doi.org/10.1016/j.jece.2017.11.010.
- L. Yang, F. Wang, C. Shu, P. Liu, W. Zhang and S. Hu, Constr. Build. Mater., 150, 774 (2017); https://doi.org/10.1016/j.conbuildmat.2017.06.004
References
Webb, M. Broomfield, S. Jones and B. Donovan, Sci. Total Environ., 470-471, 865 (2014); https://doi.org/10.1016/j.scitotenv.2013.09.091.
Y. Shavisi, S. Sharifnia, S.N. Hosseini and M.A. Khadivi, J. Ind. Eng. Chem., 20, 278 (2014); https://doi.org/10.1016/j.jiec.2013.03.037.
D. Saha and S. Deng, J. Chem. Eng. Data, 55, 3312 (2010); https://doi.org/10.1021/je100105z.
E. Rezaei, B. Schlageter, M. Nemati and B. Predicala, J. Environ. Chem. Eng., 5, 422 (2017); https://doi.org/10.1016/j.jece.2016.12.026.
S.N. Behera, M. Sharma, V.P. Aneja and R. Balasubramanian, Environ. Sci. Pollut. Res. Int., 20, 8092 (2013); https://doi.org/10.1007/s11356-013-2051-9.
F.-X. Philippe, J.-F. Cabaraux and B. Nicks, Agric. Ecosyst. Environ., 141, 245 (2011); https://doi.org/10.1016/j.agee.2011.03.012.
M.T. Gutierrez-Wing and R.F. Malone, Aquacult. Eng., 34, 163 (2006); https://doi.org/10.1016/j.aquaeng.2005.08.003.
H.-H. Ou, M.R. Hoffmann, C.-H. Liao, J.-H. Hong and S.-L. Lo, Appl. Catal. B, 99, 74 (2010); https://doi.org/10.1016/j.apcatb.2010.06.002.
M. Darestani, V. Haigh, S.J. Couperthwaite, G.J. Millar and L.D. Nghiem, J. Environ. Chem. Eng., 5, 1349 (2017); https://doi.org/10.1016/j.jece.2017.02.016.
W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer and J. Economy, Micropor. Mesopor. Mater., 234, 146 (2016); https://doi.org/10.1016/j.micromeso.2016.07.011.
A. Qajar, M. Peer, M.R. Andalibi, R. Rajagopalan and H.C. Foley, Micropor. Mesopor. Mater., 218, 15 (2015); https://doi.org/10.1016/j.micromeso.2015.06.030.
Z. Mohammadi, S. Sharifnia and Y. Shavisi, Mater. Chem. Phys., 184, 110 (2016); https://doi.org/10.1016/j.matchemphys.2016.09.031.
H. Mozzanega, J.M. Herrmann and P. Pichat, J. Phys. Chem., 83, 2251 (1979); https://doi.org/10.1021/j100480a014.
M. Altomare, G.L. Chiarello, A. Costa, M. Guarino and E. Selli, Chem. Eng. J., 191, 394 (2012); https://doi.org/10.1016/j.cej.2012.03.037.
Y. Shavisi, S. Sharifnia and Z. Mohamadi, J. Environ. Chem. Eng., 4, 2736 (2016); https://doi.org/10.1016/j.jece.2016.04.035.
Y. Shaveisi and S. Sharifnia, J. Energy Chem., 27, 290 (2018); https://doi.org/10.1016/j.jechem.2017.06.012.
A.C. Sola, D. Garzón-Sousa, J. Araña, O. González-Díaz, J.M. DoñaRodríguez, P. Ramírez de la Piscina and N. Homs, Catal. Today, 266, 53 (2016); https://doi.org/10.1016/j.cattod.2015.08.008.
Y. Dong, Z. Bai, R. Liu and T. Zhu, Catal. Today, 126, 320 (2007); https://doi.org/10.1016/j.cattod.2007.06.034.
I. Jansson, S. Suárez, F.J. Garcia-Garcia and B. Sánchez, Appl. Catal. B, 178, 100 (2015); https://doi.org/10.1016/j.apcatb.2014.10.022.
M. Nikaido, S. Furuya, T. Kakui and H. Kamiya, Adv. Powder Technol., 20, 598 (2009);https://doi.org/10.1016/j.apt.2009.10.003.
N. Tafreshi, S. Sharifnia and S. Moradi Dehaghi, Process Saf. Environ. Prot., 106, 203 (2017); https://doi.org/10.1016/j.psep.2017.01.015.
Y. Dong, Z. Bai, R. Liu and T. Zhu, Atmos. Environ., 41, 3182 (2007); https://doi.org/10.1016/j.atmosenv.2006.08.056.
S. Yao, J. Li and Z. Shi, Particuology, 8, 272 (2010); https://doi.org/10.1016/j.partic.2010.03.013.
A. Alshameri, C. Yan and X. Lei, Micropor. Mesopor. Mater., 196, 145 (2014); https://doi.org/10.1016/j.micromeso.2014.05.008.
C. Liu, R. Zhang, S. Wei, J. Wang, Y. Liu, M. Li and R. Liu, Fuel, 157, 183 (2015); https://doi.org/10.1016/j.fuel.2015.05.003.
M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin and J. Wu, Dyes Pigments, 77, 327 (2008); https://doi.org/10.1016/j.dyepig.2007.01.026.
S. Suárez, M. Yates, P. Avila and J. Blanco, Catal. Today, 105, 499 (2005); https://doi.org/10.1016/j.cattod.2005.06.019.
M. Takeuchi, M. Hidaka and M. Anpo, J. Hazard. Mater., 237-238, 133 (2012); https://doi.org/10.1016/j.jhazmat.2012.08.011.
M.R. Eskandarian, M. Fazli, M.H. Rasoulifard and H. Choi, Appl. Catal. B, 183, 407 (2016); https://doi.org/10.1016/j.apcatb.2015.11.004.
R. Nagarjuna, S. Challagulla, N. Alla, R. Ganesan and S. Roy, Mater. Des., 86, 621 (2015); https://doi.org/10.1016/j.matdes.2015.07.116.
E. Rezaei, R. Azar, M. Nemati and B. Predicala, J. Environ. Chem. Eng., 5, 5902 (2017); https://doi.org/10.1016/j.jece.2017.11.010.
L. Yang, F. Wang, C. Shu, P. Liu, W. Zhang and S. Hu, Constr. Build. Mater., 150, 774 (2017); https://doi.org/10.1016/j.conbuildmat.2017.06.004