Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Novel DNA and Dengue Virus Protein Binding of Antipyridine Based Copper and Zinc Metal Complexes through Molecular Docking Studies
Corresponding Author(s) : K.N. Gita
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
The Cu(II) and Zn(II) complexes were synthesized using Schiff base ligand by refluxing with CuCl2 and ZnCl2. A Schiff base ligand (L) was synthesized by condensing o-vanillin and 4-aminoantipyrine. The synthesized ligand and metal complexes were characterized by IR and mass spectrometry. The synthesized Cu(II) and Zn(II) metal complexes were especially docked with human DNA (PDB I.D: 1BNA) and dengue protein virus (PDB ID: 2VBC) using auto dock software tools version 1.5.6 and pymol. The binding of the ligand and biomolecule in grid point value of x × y × z directions of 90 × 90 × 90 and a grid space group value of 0.380 Å. The binding energy values of Cu(II) and Zn(II) complexes were respectively -7.1 and -7.4 kcal mol–1 towards NS3 protease-helicase, while the binding energy values of Cu(II) and Zn(II) complexes were found to be -8.5 and -8.2 kcal mol–1, respectively towards B-DNA.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Melino and M. Paci, FEBS J., 274, 2986 (2007); https://doi.org/10.1111/j.1742-4658.2007.05831.x.
- K. Wichapong, A. Nueangaudom, S. Pianwanit, W. Sippl and S. Kokpol, Trop. Biomed., 30, 388 (2013).
- F.A. Murphy, B.W.J. Mahy and M.H.V. van Regenmortel, Epidemiology of Human and Animal Viral Diseases, in Encycl. Virol., pp. 140-148 (2008).
- E. Mastrangelo, M. Milani, M. Bollati, B. Selisko, F. Peyrane, V. Pandini, G. Sorrentino, B. Canard, P.V. Konarev, D.I. Svergun, X. de Lamballerie, B. Coutard, A.A. Khromykh and M. Bolognesi, J. Mol. Biol., 372, 444 (2007); https://doi.org/10.1016/j.jmb.2007.06.055.
- C.M. Byrd, D.W. Grosenbach, A. Berhanu, D. Dai, K.F. Jones, K.B. Cardwell, C. Schneider, G. Yang, S. Tyavanagimatt, C. Harver, K.A. Wineinger, J. Page, E. Stavale, M.A. Stone, K.P. Fuller, C. Lovejoy, J.M. Leeds, D.E. Hruby and R. Jordan, Antimicrob. Agents Chemother., 57, 1902 (2013); https://doi.org/10.1128/AAC.02251-12.
- D.J. Gubler, Clin. Microbiol. Rev., 11, 480 (1998); https://doi.org/10.1128/CMR.11.3.480.
- H. Malet, M.P. Egloff, B. Selisko, R.E. Butcher, P.J. Wright, M. Roberts, A. Gruez, G. Sulzenbacher, C. Vonrhein, G. Bricogne, J.M. Mackenzie, A.A. Khromykh, A.D. Davidson and B. Canard, J. Biol. Chem., 282, 10678 (2007); https://doi.org/10.1074/jbc.M607273200.
- M. Stone, S. Jia, W.D. Heo, T. Meyer and K.V. Konan, J. Virol., 81, 4551 (2007); https://doi.org/10.1128/JVI.01366-06.
- Y. Yan, Y. Li, S. Munshi, V. Sardana, J.L. Cole, M. Sardana, L.C. Kuo, Z. Chen, C. Steinkuehler, L. Tomei and R.D. Francesco, Protein Sci., 7, 837 (1998); https://doi.org/10.1002/pro.5560070402.
- D. Eldemire-Shearer, West Indian Med. J., 57, 577 (2008).
- R.J. Kuhn, W. Zhang, M.G. Rossmann, S.V. Pletnev, J. Corver, E. Lenches, C.T. Jones, S. Mukhopadhyay, P.R. Chipman, E.G. Strauss, T.S. Baker and J.H. Strauss, Cell, 108, 717 (2002); https://doi.org/10.1016/S0092-8674(02)00660-8.
- S. Mukhopadhyay, R.J. Kuhn and M.G. Rossmann, Nat. Rev. Microbiol., 3, 13 (2005); https://doi.org/10.1038/nrmicro1067.
- L. Esteva and C. Vargas, J. Math. Biol., 46, 31 (2003); https://doi.org/10.1007/s00285-002-0168-4.
- M.G. Guzman, S.B. Halstead, H. Artsob, P. Buchy, J. Farrar, D.J. Gubler, E. Hunsperger, A. Kroeger, H.S. Margolis, E. Martínez, M.B. Nathan, J.L. Pelegrino, C. Simmons, S. Yoksan and R.W. Peeling, Nat. Rev. Microbiol., 8(12Suppl.), S7 (2010); https://doi.org/10.1038/nrmicro2460.
- K.I.P.J. Hidari and T. Suzuki, Trop. Med. Health, 39(4Suppl.), S37 (2011); https://doi.org/10.2149/tmh.2011-S03.
- A. Rodenhuis-Zybert, J. Wilschut and J.M. Smit, Cell. Mol. Life Sci., 67, 2773 (2010); https://doi.org/10.1007/s00018-010-0357-z.
- S.N. Bennett, E.C. Holmes, M. Chirivella, D.M. Rodriguez, M. Beltran, V. Vorndam, D.J. Gubler and W.O. McMillan, J. Gen. Virol., 87, 885 (2006); https://doi.org/10.1099/vir.0.81309-0.
- D. Luo, T. Xu, C. Hunke, G. Grüber, S.G. Vasudevan and J. Lescar, J. Virol., 82, 173 (2008); https://doi.org/10.1128/JVI.01788-07.
- C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 39, 453 (2006); https://doi.org/10.1107/S002188980600731X.
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334.
References
S. Melino and M. Paci, FEBS J., 274, 2986 (2007); https://doi.org/10.1111/j.1742-4658.2007.05831.x.
K. Wichapong, A. Nueangaudom, S. Pianwanit, W. Sippl and S. Kokpol, Trop. Biomed., 30, 388 (2013).
F.A. Murphy, B.W.J. Mahy and M.H.V. van Regenmortel, Epidemiology of Human and Animal Viral Diseases, in Encycl. Virol., pp. 140-148 (2008).
E. Mastrangelo, M. Milani, M. Bollati, B. Selisko, F. Peyrane, V. Pandini, G. Sorrentino, B. Canard, P.V. Konarev, D.I. Svergun, X. de Lamballerie, B. Coutard, A.A. Khromykh and M. Bolognesi, J. Mol. Biol., 372, 444 (2007); https://doi.org/10.1016/j.jmb.2007.06.055.
C.M. Byrd, D.W. Grosenbach, A. Berhanu, D. Dai, K.F. Jones, K.B. Cardwell, C. Schneider, G. Yang, S. Tyavanagimatt, C. Harver, K.A. Wineinger, J. Page, E. Stavale, M.A. Stone, K.P. Fuller, C. Lovejoy, J.M. Leeds, D.E. Hruby and R. Jordan, Antimicrob. Agents Chemother., 57, 1902 (2013); https://doi.org/10.1128/AAC.02251-12.
D.J. Gubler, Clin. Microbiol. Rev., 11, 480 (1998); https://doi.org/10.1128/CMR.11.3.480.
H. Malet, M.P. Egloff, B. Selisko, R.E. Butcher, P.J. Wright, M. Roberts, A. Gruez, G. Sulzenbacher, C. Vonrhein, G. Bricogne, J.M. Mackenzie, A.A. Khromykh, A.D. Davidson and B. Canard, J. Biol. Chem., 282, 10678 (2007); https://doi.org/10.1074/jbc.M607273200.
M. Stone, S. Jia, W.D. Heo, T. Meyer and K.V. Konan, J. Virol., 81, 4551 (2007); https://doi.org/10.1128/JVI.01366-06.
Y. Yan, Y. Li, S. Munshi, V. Sardana, J.L. Cole, M. Sardana, L.C. Kuo, Z. Chen, C. Steinkuehler, L. Tomei and R.D. Francesco, Protein Sci., 7, 837 (1998); https://doi.org/10.1002/pro.5560070402.
D. Eldemire-Shearer, West Indian Med. J., 57, 577 (2008).
R.J. Kuhn, W. Zhang, M.G. Rossmann, S.V. Pletnev, J. Corver, E. Lenches, C.T. Jones, S. Mukhopadhyay, P.R. Chipman, E.G. Strauss, T.S. Baker and J.H. Strauss, Cell, 108, 717 (2002); https://doi.org/10.1016/S0092-8674(02)00660-8.
S. Mukhopadhyay, R.J. Kuhn and M.G. Rossmann, Nat. Rev. Microbiol., 3, 13 (2005); https://doi.org/10.1038/nrmicro1067.
L. Esteva and C. Vargas, J. Math. Biol., 46, 31 (2003); https://doi.org/10.1007/s00285-002-0168-4.
M.G. Guzman, S.B. Halstead, H. Artsob, P. Buchy, J. Farrar, D.J. Gubler, E. Hunsperger, A. Kroeger, H.S. Margolis, E. Martínez, M.B. Nathan, J.L. Pelegrino, C. Simmons, S. Yoksan and R.W. Peeling, Nat. Rev. Microbiol., 8(12Suppl.), S7 (2010); https://doi.org/10.1038/nrmicro2460.
K.I.P.J. Hidari and T. Suzuki, Trop. Med. Health, 39(4Suppl.), S37 (2011); https://doi.org/10.2149/tmh.2011-S03.
A. Rodenhuis-Zybert, J. Wilschut and J.M. Smit, Cell. Mol. Life Sci., 67, 2773 (2010); https://doi.org/10.1007/s00018-010-0357-z.
S.N. Bennett, E.C. Holmes, M. Chirivella, D.M. Rodriguez, M. Beltran, V. Vorndam, D.J. Gubler and W.O. McMillan, J. Gen. Virol., 87, 885 (2006); https://doi.org/10.1099/vir.0.81309-0.
D. Luo, T. Xu, C. Hunke, G. Grüber, S.G. Vasudevan and J. Lescar, J. Virol., 82, 173 (2008); https://doi.org/10.1128/JVI.01788-07.
C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 39, 453 (2006); https://doi.org/10.1107/S002188980600731X.
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334.