Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A New Series of Moisture Stable Metallacyclic Heteroleptic Titanium(IV) Complexes of 8-Hydroxyquinoline: Synthesis, Characterization, Stability Study and Cytotoxicity Evaluation
Corresponding Author(s) : Blassan Samuel
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
A new series of moisture resistant metallacyclic titanium(IV) derivatives prepared from 8-hydroxyquinoline of the general formulae [(Q2)Ti{(L1)(L2OR)}] (3a-b, 3d-e), [(Q2)Ti{(L1)(L3)}] (3c and 3f) and [(Q2)Ti(L4)] (3g and 3h) is synthesized by interacting the precursor molecule [(Q2)Ti(OiPr)2] (2) with various 2-heteroaryl methyl ketone oximes and various alkoxyalkanols/2-hydroxypyridine or only with catechol/resorcinol in 1:1:1 or in 1:1 molar ratios in anhydrous boiling toluene (where, HQ = 8-hydroxyquinoline; iPr = isopropyl; L1H = HONC(Me)py-2/HONC(Me)fu-2; L2 = O-CH2-CH2-; R = CH3, C2H5; L3H = 2-hydroxypyridine and L4H = catechol/resorcinol). Stability study revealed that these molecules were stable for a period of 72 h. Mononuclear nature of the complexes was confirmed through mass spectral analysis. Thermogravimetric results explain the multistage fragmentation of the complexes at 900 ºC. NMR, FTIR, and UV-visible spectral data suggested that titanium-ligands attachment is in a hexa-coordinated manner. Additionally, all these molecules were tested for their tumour inhibiting potential against MDA-MB-231 human breast carcinoma cell line.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Younes, P. Sanjiv and G.R. Santiago, Inorganics, 5, 4 (2017); https://doi.org/10.3390/inorganics5010004.
- B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongeriehten and E. Vogel, Tumor-Inhibiting Bis(β-diketonato) Metal Complexes. Budotitane, cisdiethoxybis(1-phenylbutane-1,3-dionato)titanium(IV), In: Bioinorganic Chemistry; Structure and Bonding, Springer: Berlin, Heidelberg, vol. 78 (1991).
- P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987); https://doi.org/10.1021/cr00081a012.
- A. Tzubery, N. Melamed-Book and E.Y. Tshuva, Dalton Trans., 47, 3669 (2018); https://doi.org/10.1039/C7DT04828A.
- N. Ganot, B. Redko, G. Gellerman and E.Y. Tshuva, RSC Adv., 5, 7874 (2015); https://doi.org/10.1039/C4RA13484B.
- A. Tzubery and E.Y. Tshuva, Eur. J. Inorg. Chem., 2017, 1695 (2017); https://doi.org/10.1002/ejic.201601200.
- S. Meker, O. Braitbard, M.D. Hall, J. Hochman and E.Y. Tshuva, Chem. Eur. J., 22, 9986 (2016); https://doi.org/10.1002/chem.201601389.
- B. Samuel, K.R. Ethiraj and M. Pathak, Med. Chem. Res., 24, 1504 (2015); https://doi.org/10.1007/s00044-014-1234-3.
- W.F. Zeng, Y.S. Chen, M.Y. Chiang, S.S. Chern and C.P. Cheng, Polyhedron, 21, 1081 (2002); https://doi.org/10.1016/S0277-5387(02)00873-2.
- W.F. Zeng, Y.H. Chen, M.Y. Chiang and C.P. Cheng, Polyhedron, 26, 1303 (2007); https://doi.org/10.1016/j.poly.2006.10.048.
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel and L.A. Torre and A. Jemal, CA: Cancer J. Clin., 68, 394 (2018); https://doi.org/10.3322/caac.21492
- D.L. Gamble, W.P. Hems and B. Ridge, J. Chem. Soc. Perkin Trans. 1, 248 (2001); https://doi.org/10.1039/B007659G.
- I.W. Ouédraogo, M. Boulvin, R. Flammang, P. Gerbaux and Y.L. BonziCoulibaly, Molecules, 14, 3275 (2009); https://doi.org/10.3390/molecules14093275.
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longman: London, edn. 5, pp. 228-229 (1989).
- D.C. Bradley, F. M. Abd-El Halim, R.C. Mehrotra and W. Wardlaw, J. Chem. Soc., 4609 (1952); https://doi.org/10.1039/JR9520004609.
- A. Chaudhary, V. Dhayal, M. Nagar, R. Bohra, S.M. Mobin and P.P. Mathur, Polyhedron, 30, 821 (2011); https://doi.org/10.1016/j.poly.2010.12.025.
- B. Samuel, K. Tummalapalli, P.V. Giri and M. Pathak, Asian. J. Chem., 25, 8034 (2013); https://doi.org/10.14233/ajchem.2013.15015.
- M. Pathak, B. Samuel, K. Tummalapalli, P.V. Giri, S. Koppala, R. Bohra and K.P. Kim, Adv. Mat. Res., 584, 415 (2012); https://doi.org/10.4028/www.scientific.net/AMR.584.415.
- S.A. Sadeek, W.H. El-Shwiniy and M.S. El-Attar, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 84, 99 (2011); https://doi.org/10.1016/j.saa.2011.09.010.
- E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009); https://doi.org/10.1016/j.ccr.2008.11.015.
- N.D.R. Kumar, V.C. George, P.K. Suresh and R.A. Kumar, Asian J. Pharm. Clin. Res., 5, 189 (2012).
- O.S. Weislow, R. Kiser, D.L. Fine, J. Bader, R.H. Shoemaker and M.R. Boyd, J. Nat. Cancer Inst., 81, 577 (1989); https://doi.org/10.1093/jnci/81.8.577.
- N.C. Campanella, M. da Silva Demartini, C. Torres, E.T. de Almeida and C.M.C.P. Gouvea, Genet. Mol. Bio., 35, 159 (2012); https://dx.doi.org/10.1590/S1415-47572012005000016.
- D. Peri, S. Meker, M. Shavit and E.Y. Tshuva, Chem. Eur. J., 15, 2403 (2009); https://doi.org/10.1002/chem.200801310.
References
E. Younes, P. Sanjiv and G.R. Santiago, Inorganics, 5, 4 (2017); https://doi.org/10.3390/inorganics5010004.
B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongeriehten and E. Vogel, Tumor-Inhibiting Bis(β-diketonato) Metal Complexes. Budotitane, cisdiethoxybis(1-phenylbutane-1,3-dionato)titanium(IV), In: Bioinorganic Chemistry; Structure and Bonding, Springer: Berlin, Heidelberg, vol. 78 (1991).
P. Koepf-Maier and H. Koepf, Chem. Rev., 87, 1137 (1987); https://doi.org/10.1021/cr00081a012.
A. Tzubery, N. Melamed-Book and E.Y. Tshuva, Dalton Trans., 47, 3669 (2018); https://doi.org/10.1039/C7DT04828A.
N. Ganot, B. Redko, G. Gellerman and E.Y. Tshuva, RSC Adv., 5, 7874 (2015); https://doi.org/10.1039/C4RA13484B.
A. Tzubery and E.Y. Tshuva, Eur. J. Inorg. Chem., 2017, 1695 (2017); https://doi.org/10.1002/ejic.201601200.
S. Meker, O. Braitbard, M.D. Hall, J. Hochman and E.Y. Tshuva, Chem. Eur. J., 22, 9986 (2016); https://doi.org/10.1002/chem.201601389.
B. Samuel, K.R. Ethiraj and M. Pathak, Med. Chem. Res., 24, 1504 (2015); https://doi.org/10.1007/s00044-014-1234-3.
W.F. Zeng, Y.S. Chen, M.Y. Chiang, S.S. Chern and C.P. Cheng, Polyhedron, 21, 1081 (2002); https://doi.org/10.1016/S0277-5387(02)00873-2.
W.F. Zeng, Y.H. Chen, M.Y. Chiang and C.P. Cheng, Polyhedron, 26, 1303 (2007); https://doi.org/10.1016/j.poly.2006.10.048.
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel and L.A. Torre and A. Jemal, CA: Cancer J. Clin., 68, 394 (2018); https://doi.org/10.3322/caac.21492
D.L. Gamble, W.P. Hems and B. Ridge, J. Chem. Soc. Perkin Trans. 1, 248 (2001); https://doi.org/10.1039/B007659G.
I.W. Ouédraogo, M. Boulvin, R. Flammang, P. Gerbaux and Y.L. BonziCoulibaly, Molecules, 14, 3275 (2009); https://doi.org/10.3390/molecules14093275.
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longman: London, edn. 5, pp. 228-229 (1989).
D.C. Bradley, F. M. Abd-El Halim, R.C. Mehrotra and W. Wardlaw, J. Chem. Soc., 4609 (1952); https://doi.org/10.1039/JR9520004609.
A. Chaudhary, V. Dhayal, M. Nagar, R. Bohra, S.M. Mobin and P.P. Mathur, Polyhedron, 30, 821 (2011); https://doi.org/10.1016/j.poly.2010.12.025.
B. Samuel, K. Tummalapalli, P.V. Giri and M. Pathak, Asian. J. Chem., 25, 8034 (2013); https://doi.org/10.14233/ajchem.2013.15015.
M. Pathak, B. Samuel, K. Tummalapalli, P.V. Giri, S. Koppala, R. Bohra and K.P. Kim, Adv. Mat. Res., 584, 415 (2012); https://doi.org/10.4028/www.scientific.net/AMR.584.415.
S.A. Sadeek, W.H. El-Shwiniy and M.S. El-Attar, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 84, 99 (2011); https://doi.org/10.1016/j.saa.2011.09.010.
E.Y. Tshuva and D. Peri, Coord. Chem. Rev., 253, 2098 (2009); https://doi.org/10.1016/j.ccr.2008.11.015.
N.D.R. Kumar, V.C. George, P.K. Suresh and R.A. Kumar, Asian J. Pharm. Clin. Res., 5, 189 (2012).
O.S. Weislow, R. Kiser, D.L. Fine, J. Bader, R.H. Shoemaker and M.R. Boyd, J. Nat. Cancer Inst., 81, 577 (1989); https://doi.org/10.1093/jnci/81.8.577.
N.C. Campanella, M. da Silva Demartini, C. Torres, E.T. de Almeida and C.M.C.P. Gouvea, Genet. Mol. Bio., 35, 159 (2012); https://dx.doi.org/10.1590/S1415-47572012005000016.
D. Peri, S. Meker, M. Shavit and E.Y. Tshuva, Chem. Eur. J., 15, 2403 (2009); https://doi.org/10.1002/chem.200801310.