Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural Investigations of xV2O5-(100-x)B2O3 Glass Matrix by Spectroscopic Techniques
Corresponding Author(s) : Rajesh Kumar Sharma
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
Preparation of glasses of xV2O5-(100-x) B2O3 (21 ≤ x ≤ 41) system for x = 21, 31, 41 mol % have been performed using sol-gel process and studied by employing XRD, FT-IR, EPR and UV-visible techniques. The glassy phase was established by powder XRD patterns. Fourier transform infrared red studies of the amorphous samples revealed the appearance of triangular [BO3/2] and tetrahedral [BO4/2] and V = O units. X-band powder EPR studies exhibit partially resolved isotropic lines at 300 K and well resolved hyperfine structure having a 16 line features (8 parallel lines and 8 perpendicular lines) at 77 K. The assignment of EPR parameters, gxx = gyy = g⊥ > gzz = g|| and Azz = A|| > Axx = Ayy = A⊥ is consistent with ground state 2B2 which confirms that the tetravalent vanadium (3d1) exists in the glass matrix as vanadyl ion in tetragonally distorted compressed octahedral symmetry having C4v symmetry. UV-visible absorption spectra of glasses exhibit characteristic two ligand field d-d bands in the tetragonal fields of VO2+ ions. Using EPR parameters and UV-visible data, various molecular orbital bonding parameters were ascertained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Montani, M. Levy and J.L. Souquest, J. Non-Cryst. Solids, 149, 249 (1992); https://doi.org/10.1016/0022-3093(92)90073-S.
- R.A. Smith, J. Non-Cryst Solids, 84, 421 (1986); https://doi.org/10.1016/0022-3093(86)90805-7.
- L. Baia, R. Steefan, J. Popp, S. Simon and W. Kiefer, J. Non-Cryst. Solids, 324, 109 (2003); https://doi.org/10.1016/S0022-3093(03)00227-8.
- R.V.S.S.N. Ravikumar, V.R. Reddy, A.V. Chandrasekar, B.J. Reddy, Y.P. Reddy and P.S. Rao, J. Alloys Compds, 337, 272 (2002); https://doi.org/10.1016/S0925-8388(01)01963-6.
- K.V. Narasimhulu and J.L. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 53, 2605 (1997); https://doi.org/10.1016/S1386-1425(97)00196-0.
- G. Hochstrasser, Phys. Chem. Glasses, 7, 178 (1966).
- G.N. Greaves, J. Non-Cryst. Solids, 11, 427 (1973); https://doi.org/10.1016/0022-3093(73)90089-6.
- F.R. Landsberger and P.J. Bray, J. Chem. Phys., 53, 2757 (1970); https://doi.org/10.1063/1.1674400.
- R.R. Kumar, A.S. Rao and B.C. Venkata Reddy, Opt. Mater., 4, 723 (1995); https://doi.org/10.1016/0925-3467(95)00021-6.
- R.P. Sreekanth Chakradhar, G. Sivaramaiah, J.L. Rao and N.O. Gopal, Modern Phys. Lett. B, 19, 643 (2005); https://doi.org/10.1142/S021798490500861X.
- D. Kivelson and S.K. Lee, J. Chem. Phys., 41, 1896 (1964); https://doi.org/10.1063/1.1726180.
- H.G. Hecht and T.S. Johnston, J. Chem. Phys., 46, 23 (1967); https://doi.org/10.1063/1.1840378.
- M.C. Ungureanu, M. Levy and J. Souquet, J. Ceramics Silikaty, 44, 81 (2000).
- H. Mori, H. Matsuno and H. Sakata, J. Non-Cryst. Solids. 276, 78 (2000); https://doi.org/10.1016/S0022-3093(00)00280-5.
- K. Sega, H. Kasai and H. Sakata, Mater. Chem. Phys., 53, 28 (1998); https://doi.org/10.1016/S0254-0584(97)02052-X.
- S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan and W. Zhou, Appl. Surf. Sci., 256, 2309 (2010); https://doi.org/10.1016/j.apsusc.2009.09.039.
- L.D. Bogomaolva, N.A. Krasilnikova, V.L. Bogdanov, V.D. Khalilev and V.V. Mitrofanov, J. Non-Cryst. Solids, 188, 130 (1995); https://doi.org/10.1016/0022-3093(95)00098-4.
- O. Cozar, I. Ardelean, V. Simon, G. Ilonca, C. Crocium and C. Cefan, J. Alloys. Compd., 326, 124 (2001); https://doi.org/10.1016/S0925-8388(01)01247-6.
- Y.M. Moustafa, I.A. Gohar, A.A. Megahed and E.L. Mansour, Phys. Chem. Glasses, 38, 92 (1997).
- M. Subhadra and P. Kistaiah, J. Alloys. Compd., 505, 634 (2010); https://doi.org/10.1016/j.jallcom.2010.06.097.
- A. Agarwal, V.P. Seth, P.S. Gahlot, S. Khasa, M. Arora and S.K. Gupta, J. Alloys Compd., 377, 225 (2004); https://doi.org/10.1016/j.jallcom.2004.01.057.
- P.G. Prakash and J.L. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 2595 (2005); https://doi.org/10.1016/j.saa.2004.09.025.
- O. Cozar, I. Ardelean, I. Bratu, V. Simon, C. Cracium, L. David and C. Cefan, J. Mol. Struct., 563, 421 (2001); https://doi.org/10.1016/S0022-2860(01)00442-2.
- P. Raghunatha and B.B. Das, Chem. Phys. Lett., 160, 627 (1989); https://doi.org/10.1016/0009-2614(89)80076-4.
- E.I. Kamitsos, M.A. Karakassides and G.D. Chryssikos, Phys. Chem. Glasses, 30, 229 (1989).
- Y.Y. Kim, K.H. Kim and J.S. Choi, J. Phys. Chem. Glasses, 50, 903 (1989).
- T.R. Gilson, O.F. Bizri and N. Cheethham, J. Chem. Soc. Dalton Trans., 291 (1973); https://doi.org/10.1039/DT9730000291.
- E.I. Kamitsos, M.A. Karakassides and G.D. Chryssikos, J. Phys. Chem., 91, 1073 (1987); https://doi.org/10.1021/j100289a014.
- F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, Wiley: New Delhi, India, edn 6, pp. 723-725 (2008).
- V.A. Kolesova and F.K. Stek, J. Glass Technol., 12, 1 (1986).
- F. Tian, X. Zhang and L. Pan, J. Non-Cryst. Solids, 105, 263(1988); https://doi.org/10.1016/0022-3093(88)90316-X.
- O. Cozar, I. Ardelean, V. Simon, L. David, V. Mih and N. Vedean, Appl. Magn. Reson., 16, 529 (1999); https://doi.org/10.1007/BF03161948.
- H. Toyuki and S. Akagi, Phys. Chem. Glasses, 13, 15 (1972).
- J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Oxford University Press: New York, p. 291 (1990).
- J.A. Weil, J.R. Bolton and J.E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, A Wiley-Interscience Publication, p. 142 (1994).
- C.J. Ballhausen and H.B. Gray, Inorg. Chem., 1, 111 (1962); https://doi.org/10.1021/ic50001a022.
- D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Universities Press, p. 243 (2001).
- R. Muncaster and S. Parke, J. Non-Cryst. Solids, 24, 399 (1977); https://doi.org/10.1016/0022-3093(77)90107-7.
- A. Murali, J.L. Rao and A.V. Subbaiah, J. Alloys Compd., 257, 96 (1997); https://doi.org/10.1016/S0925-8388(96)03122-2.
References
R.A. Montani, M. Levy and J.L. Souquest, J. Non-Cryst. Solids, 149, 249 (1992); https://doi.org/10.1016/0022-3093(92)90073-S.
R.A. Smith, J. Non-Cryst Solids, 84, 421 (1986); https://doi.org/10.1016/0022-3093(86)90805-7.
L. Baia, R. Steefan, J. Popp, S. Simon and W. Kiefer, J. Non-Cryst. Solids, 324, 109 (2003); https://doi.org/10.1016/S0022-3093(03)00227-8.
R.V.S.S.N. Ravikumar, V.R. Reddy, A.V. Chandrasekar, B.J. Reddy, Y.P. Reddy and P.S. Rao, J. Alloys Compds, 337, 272 (2002); https://doi.org/10.1016/S0925-8388(01)01963-6.
K.V. Narasimhulu and J.L. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 53, 2605 (1997); https://doi.org/10.1016/S1386-1425(97)00196-0.
G. Hochstrasser, Phys. Chem. Glasses, 7, 178 (1966).
G.N. Greaves, J. Non-Cryst. Solids, 11, 427 (1973); https://doi.org/10.1016/0022-3093(73)90089-6.
F.R. Landsberger and P.J. Bray, J. Chem. Phys., 53, 2757 (1970); https://doi.org/10.1063/1.1674400.
R.R. Kumar, A.S. Rao and B.C. Venkata Reddy, Opt. Mater., 4, 723 (1995); https://doi.org/10.1016/0925-3467(95)00021-6.
R.P. Sreekanth Chakradhar, G. Sivaramaiah, J.L. Rao and N.O. Gopal, Modern Phys. Lett. B, 19, 643 (2005); https://doi.org/10.1142/S021798490500861X.
D. Kivelson and S.K. Lee, J. Chem. Phys., 41, 1896 (1964); https://doi.org/10.1063/1.1726180.
H.G. Hecht and T.S. Johnston, J. Chem. Phys., 46, 23 (1967); https://doi.org/10.1063/1.1840378.
M.C. Ungureanu, M. Levy and J. Souquet, J. Ceramics Silikaty, 44, 81 (2000).
H. Mori, H. Matsuno and H. Sakata, J. Non-Cryst. Solids. 276, 78 (2000); https://doi.org/10.1016/S0022-3093(00)00280-5.
K. Sega, H. Kasai and H. Sakata, Mater. Chem. Phys., 53, 28 (1998); https://doi.org/10.1016/S0254-0584(97)02052-X.
S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan and W. Zhou, Appl. Surf. Sci., 256, 2309 (2010); https://doi.org/10.1016/j.apsusc.2009.09.039.
L.D. Bogomaolva, N.A. Krasilnikova, V.L. Bogdanov, V.D. Khalilev and V.V. Mitrofanov, J. Non-Cryst. Solids, 188, 130 (1995); https://doi.org/10.1016/0022-3093(95)00098-4.
O. Cozar, I. Ardelean, V. Simon, G. Ilonca, C. Crocium and C. Cefan, J. Alloys. Compd., 326, 124 (2001); https://doi.org/10.1016/S0925-8388(01)01247-6.
Y.M. Moustafa, I.A. Gohar, A.A. Megahed and E.L. Mansour, Phys. Chem. Glasses, 38, 92 (1997).
M. Subhadra and P. Kistaiah, J. Alloys. Compd., 505, 634 (2010); https://doi.org/10.1016/j.jallcom.2010.06.097.
A. Agarwal, V.P. Seth, P.S. Gahlot, S. Khasa, M. Arora and S.K. Gupta, J. Alloys Compd., 377, 225 (2004); https://doi.org/10.1016/j.jallcom.2004.01.057.
P.G. Prakash and J.L. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 2595 (2005); https://doi.org/10.1016/j.saa.2004.09.025.
O. Cozar, I. Ardelean, I. Bratu, V. Simon, C. Cracium, L. David and C. Cefan, J. Mol. Struct., 563, 421 (2001); https://doi.org/10.1016/S0022-2860(01)00442-2.
P. Raghunatha and B.B. Das, Chem. Phys. Lett., 160, 627 (1989); https://doi.org/10.1016/0009-2614(89)80076-4.
E.I. Kamitsos, M.A. Karakassides and G.D. Chryssikos, Phys. Chem. Glasses, 30, 229 (1989).
Y.Y. Kim, K.H. Kim and J.S. Choi, J. Phys. Chem. Glasses, 50, 903 (1989).
T.R. Gilson, O.F. Bizri and N. Cheethham, J. Chem. Soc. Dalton Trans., 291 (1973); https://doi.org/10.1039/DT9730000291.
E.I. Kamitsos, M.A. Karakassides and G.D. Chryssikos, J. Phys. Chem., 91, 1073 (1987); https://doi.org/10.1021/j100289a014.
F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, Wiley: New Delhi, India, edn 6, pp. 723-725 (2008).
V.A. Kolesova and F.K. Stek, J. Glass Technol., 12, 1 (1986).
F. Tian, X. Zhang and L. Pan, J. Non-Cryst. Solids, 105, 263(1988); https://doi.org/10.1016/0022-3093(88)90316-X.
O. Cozar, I. Ardelean, V. Simon, L. David, V. Mih and N. Vedean, Appl. Magn. Reson., 16, 529 (1999); https://doi.org/10.1007/BF03161948.
H. Toyuki and S. Akagi, Phys. Chem. Glasses, 13, 15 (1972).
J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Oxford University Press: New York, p. 291 (1990).
J.A. Weil, J.R. Bolton and J.E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, A Wiley-Interscience Publication, p. 142 (1994).
C.J. Ballhausen and H.B. Gray, Inorg. Chem., 1, 111 (1962); https://doi.org/10.1021/ic50001a022.
D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Universities Press, p. 243 (2001).
R. Muncaster and S. Parke, J. Non-Cryst. Solids, 24, 399 (1977); https://doi.org/10.1016/0022-3093(77)90107-7.
A. Murali, J.L. Rao and A.V. Subbaiah, J. Alloys Compd., 257, 96 (1997); https://doi.org/10.1016/S0925-8388(96)03122-2.