Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Substituted 4-(4-((3-Nitro-2-oxo-2H-chromene-4-yl)amino)phenyl)morpholine-3-one Coumarin Derivatives
Corresponding Author(s) : Yogesh J. Sanghani
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
A series of novel 4-(4-amino phenyl) morpholine-3-one substituted coumarin derivatives have been prepared by chloramine coupling reaction and were identified. The novel synthetic route involves nucleophilic substitution reaction of 4-chloro-3-nitro-2H-chromene-2-one with 4-(4-amino phenyl)morpholine-3-one. Due to the presence of nitro group in coumarin derivatives make substitution reaction easy and convenient at low temperature. Using DMF as solvent and K2CO3 as base various substituted 4-(4-((3-nitro-2-oxo-2H-chromen-4-yl)amino)phenyl)morpholine-3-one derivatives (YS-1 to YS-10) can be obtain in good yield and high purity. Structural characterization of all synthesized compound was done by NMR, Mass and IR spectra.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Zalfiqar and H. Nasim, Indian J. Chem., 46B, 1322 (2007).
- B.S. Creaven, D.A. Egan, K. Kavanagh, M. McCann, A. Noble, B. Thati and M. Walsh, Inorg. Chim. Acta, 359, 3976 (2006); https://doi.org/10.1016/j.ica.2006.04.006.
- P. Laurin, D. Ferroud, M. Klich, C. Dupuis-Hamelin, P. Mauvais, P. Lassaigne, A. Bonnefoy and B. Musicki, Bioorg. Med. Chem. Lett., 9, 2079 (1999); https://doi.org/10.1016/S0960-894X(99)00329-7.
- K. Abou-Melha and H. Faruk, J. Iran. Chem. Soc., 5, 122 (2008); https://doi.org/10.1007/BF03245825.
- M. Di Braccio, G. Grossi, G. Roma, M.G. Signorello and G. Leoncini, Eur. J. Med. Chem., 39, 337 (2004); https://doi.org/10.1016/j.ejmech.2003.12.010.
- I. Khan, M. Kulkarni and C.-M. Sun, Eur. J. Med. Chem., 40, 1168 (2005); https://doi.org/10.1016/j.ejmech.2005.05.007.
- A. Burguete, E. Pontiki, D. Hadjipavlou-Litina, S. Ancizu, R. Villar, B. Solano, E. Moreno, E. Torres, S. Pérez, I. Aldana and A. Monge, Chem. Biol. Drug Des., 77, 255 (2011); https://doi.org/10.1111/j.1747-0285.2011.01076.x.
- L.E. Seitz, W.J. Suling and R.C. Reynolds, J. Med. Chem., 45, 5604 (2002); https://doi.org/10.1021/jm020310n.
- J. Guillon, I. Forfar, M. Mamani-Matsuda, V. Desplat, M. Saliège, D. Thiolat, S. Massip, A. Tabourier, J.-M. Léger and B. Dufaure, Bioorg. Med. Chem., 15, 194 (2007); https://doi.org/10.1016/j.bmc.2006.09.068.
- V.K. Tandon, B.D. Yadav, H.K. Maurya, A.K. Chaturvedi and P.K. Shukla, Bioorg. Med. Chem., 14, 6120 (2006); https://doi.org/10.1016/j.bmc.2006.04.029.
- B. Zarranz, A. Jaso, I. Aldana and A. Monge, Bioorg. Med. Chem., 12, 3711 (2004); https://doi.org/10.1016/j.bmc.2004.04.013.
- M. Waring, T. Ben-Hadda, A. Kotchevar, A. Ramdani, R. Touzani, S. Elkadiri, A. Hakkou, M. Bouakka and T. Ellis, Molecules, 7, 641 (2002); https://doi.org/10.3390/70800641.
- E. Vicente, L.M. Lima, E. Bongard, S. Charnaud, R. Villar, B. Solano, A. Burguete, S. Perez-Silanes, I. Aldana and L. Vivas, Eur. J. Med. Chem., 43, 1903 (2008); https://doi.org/10.1016/j.ejmech.2007.11.024.
- Y.B. Kim, Y.H. Kim, J.Y. Park and S.K. Kim, Bioorg. Med. Chem., 14, 541 (2004); https://doi.org/10.1016/j.bmcl.2003.09.086.
- J. Jampilek, Curr. Med. Chem., 21, 4347 (2014); https://doi.org/10.2174/0929867321666141011194825.
- K. Toshima, K. Takano, T. Ozawa and S. Matsumura, Chem. Commun., 212 (2002); https://doi.org/10.1039/b107829c.
- N.D. Sonawane and D. Rangnekar, Heterocycl. Chem., 39, 303 (2002); https://doi.org/10.1002/jhet.5570390210.
- A. Katoh, T. Yoshida and J. Ohkanda, Heterocycles, 52, 911 (2000); https://doi.org/10.3987/COM-99-S61.
- J.F. Zhou, G.X. Gong, L.T. An, Y. Liu, Y.X. Zhu, Y.L. Zhu and S.-J. Ji, Synlett, 2008, 3163 (2008); https://doi.org/10.1055/s-0028-1087280.
- A.A. Kamble, R.R. Kamble, M.N. Kumbar and G. Tegginamath, Med. Chem. Res., 25, 1163 (2016); https://doi.org/10.1007/s00044-016-1558-2.
References
A. Zalfiqar and H. Nasim, Indian J. Chem., 46B, 1322 (2007).
B.S. Creaven, D.A. Egan, K. Kavanagh, M. McCann, A. Noble, B. Thati and M. Walsh, Inorg. Chim. Acta, 359, 3976 (2006); https://doi.org/10.1016/j.ica.2006.04.006.
P. Laurin, D. Ferroud, M. Klich, C. Dupuis-Hamelin, P. Mauvais, P. Lassaigne, A. Bonnefoy and B. Musicki, Bioorg. Med. Chem. Lett., 9, 2079 (1999); https://doi.org/10.1016/S0960-894X(99)00329-7.
K. Abou-Melha and H. Faruk, J. Iran. Chem. Soc., 5, 122 (2008); https://doi.org/10.1007/BF03245825.
M. Di Braccio, G. Grossi, G. Roma, M.G. Signorello and G. Leoncini, Eur. J. Med. Chem., 39, 337 (2004); https://doi.org/10.1016/j.ejmech.2003.12.010.
I. Khan, M. Kulkarni and C.-M. Sun, Eur. J. Med. Chem., 40, 1168 (2005); https://doi.org/10.1016/j.ejmech.2005.05.007.
A. Burguete, E. Pontiki, D. Hadjipavlou-Litina, S. Ancizu, R. Villar, B. Solano, E. Moreno, E. Torres, S. Pérez, I. Aldana and A. Monge, Chem. Biol. Drug Des., 77, 255 (2011); https://doi.org/10.1111/j.1747-0285.2011.01076.x.
L.E. Seitz, W.J. Suling and R.C. Reynolds, J. Med. Chem., 45, 5604 (2002); https://doi.org/10.1021/jm020310n.
J. Guillon, I. Forfar, M. Mamani-Matsuda, V. Desplat, M. Saliège, D. Thiolat, S. Massip, A. Tabourier, J.-M. Léger and B. Dufaure, Bioorg. Med. Chem., 15, 194 (2007); https://doi.org/10.1016/j.bmc.2006.09.068.
V.K. Tandon, B.D. Yadav, H.K. Maurya, A.K. Chaturvedi and P.K. Shukla, Bioorg. Med. Chem., 14, 6120 (2006); https://doi.org/10.1016/j.bmc.2006.04.029.
B. Zarranz, A. Jaso, I. Aldana and A. Monge, Bioorg. Med. Chem., 12, 3711 (2004); https://doi.org/10.1016/j.bmc.2004.04.013.
M. Waring, T. Ben-Hadda, A. Kotchevar, A. Ramdani, R. Touzani, S. Elkadiri, A. Hakkou, M. Bouakka and T. Ellis, Molecules, 7, 641 (2002); https://doi.org/10.3390/70800641.
E. Vicente, L.M. Lima, E. Bongard, S. Charnaud, R. Villar, B. Solano, A. Burguete, S. Perez-Silanes, I. Aldana and L. Vivas, Eur. J. Med. Chem., 43, 1903 (2008); https://doi.org/10.1016/j.ejmech.2007.11.024.
Y.B. Kim, Y.H. Kim, J.Y. Park and S.K. Kim, Bioorg. Med. Chem., 14, 541 (2004); https://doi.org/10.1016/j.bmcl.2003.09.086.
J. Jampilek, Curr. Med. Chem., 21, 4347 (2014); https://doi.org/10.2174/0929867321666141011194825.
K. Toshima, K. Takano, T. Ozawa and S. Matsumura, Chem. Commun., 212 (2002); https://doi.org/10.1039/b107829c.
N.D. Sonawane and D. Rangnekar, Heterocycl. Chem., 39, 303 (2002); https://doi.org/10.1002/jhet.5570390210.
A. Katoh, T. Yoshida and J. Ohkanda, Heterocycles, 52, 911 (2000); https://doi.org/10.3987/COM-99-S61.
J.F. Zhou, G.X. Gong, L.T. An, Y. Liu, Y.X. Zhu, Y.L. Zhu and S.-J. Ji, Synlett, 2008, 3163 (2008); https://doi.org/10.1055/s-0028-1087280.
A.A. Kamble, R.R. Kamble, M.N. Kumbar and G. Tegginamath, Med. Chem. Res., 25, 1163 (2016); https://doi.org/10.1007/s00044-016-1558-2.