Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel Pyrimidine Derivatives from 2,5-Dichloro-3-acetylthienyl Chalcones as Antifungal, Antitubercular and Cytotoxic Agents: Design, Synthesis, Biological Activity and Docking Study
Corresponding Author(s) : Bontha Venkata Subrahmanya Lokesh
Asian Journal of Chemistry,
Vol. 31 No. 6 (2019): Vol 31 Issue 6
Abstract
Twenty novel pyrimidine derivatives were synthesized from 2,5-dichloro-3-acetylthienyl chalcones by reacting with guanidine HCl in presence of KOH and ethanol under reflux for 6 h. Their structural characterizations were evaluated by ATR-FTIR, 1H NMR, 13C NMR, mass spectroscopy. They were also screened for antifungal, antitubercular and cytotoxicity activities. They were displayed good antifungal activity (MIC = 32-125 μg/mL) against Aspergillus niger and Candida tropicalis fungal species except compound 15 with 4"-pyridinyl moiety (MIC = 8.00 μg/mL) being more potent. Compound 5 with 2",4"-dichlorophenyl moiety was shown with good antitubercular activity (MIC = 6.2 μg/mL) against Mycobacterium tuberculosis H37Rv (MTB) stain. They have also tested for in vitro cytotoxicity activity against DU-145 prostate cancer cell lines. In which the compound 15 with 4"-pyridinyl moiety (IC50 = 2.0 ± 0.1 μg/mL) and compound 17 with 2"-pyrrolyl moiety (IC50 = 6.0 ± 0.1 μg/mL) possess highly potent antiprostate cancer properties. The molecular docking was done with the crystalline structure of mitochondrial 2-enoyl thioester reductase Etr1p/Etr2p heterodimer from Candida tropicalis fungal species with compound 15 (-7.80 kcal/mol) and shown greater binding affinity than fluconazole (-7.60 kcal/mol). Docking was performed with protein crystalline structure (PDB ID: 2WEE) of Mycobacterium tuberculosis H37Rv (MTB) stain and among all, compound 5 was exhibited good binding affinity (-6.90 kcal/mol), compared to pyrazinamide (-4.10 kcal/mol). The protein crystalline structure of a mutant androgen receptor (AR) ligand-binding domain (LBD) (PDB file: 1GS4) was tested with compounds 15 and 17 (-7.60 and -8.20 kcal/mol). They were exhibited good binding properties compared to methotrexate (-5.10 kcal/mol). Hence, these novel pyrimidine compounds are as lead compounds as antifungal, antitubercular and cytotoxic agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir and J. Vaya, Bioorg. Med. Chem., 13, 433 (2005); https://doi.org/10.1016/j.bmc.2004.10.010.
- M. Cushman and D. Nagarathnam, J. Nat. Prod., 54, 1656 (1991); https://doi.org/10.1021/np50078a027.
- S.K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L.C. Mishra and V.K. Bhasin, Med. Chem. Res., 18, 407 (2009); https://doi.org/10.1007/s00044-008-9137-9.
- S.S. Lim, H.S. Kim and D.U. Lee, Bull. Korean Chem. Soc., 28, 2495 (2007); https://doi.org/10.5012/bkcs.2007.28.12.2495.
- M. Kidwai, S. Saxena, S. Rastogi and R. Venkataramanan, Curr. Med. Chem., 2, 269 (2003); https://doi.org/10.2174/1568012033483015.
- F.A. Abbas and H.Z. Ezzat, Int. J. ChemTech Res., 9, 206 (2016).
- M. Ramachander, G. Swetha, B. Deepthi and S. Kalyani, Int. J. ChemTech. Res., 8, 88 (2015).
- H. Dansena, H.J. Dhongade and K. Chandrakar, Asian J. Pharm. Clin. Res., 8, 171 (2015).
- S.Y. Hassan, J. Braz. Chem. Soc., 22, 1286 (2011); https://doi.org/10.1590/S0103-50532011000700014.
- P.K. Padarthi, S. Sridhar, K. Jagatheesh and E. Namasivayam, Int. J. Res. Ayurveda Pharm., 4, 355 (2013); https://doi.org/10.7897/2277-4343.04310.
- S. Sridhar, Y. Rajendra Prasad and S.C. Dinda, Int. J. Pharm. Sci. Res., 2, 2562 (2011).
- A.R. Trivedi, D.K. Dodiya, N.R. Ravat and V.H. Shah, ARKIVOC, 131 (2008); https://doi.org/10.3998/ark.5550190.0009.b13.
- M. Kachroo, R. Panda and Y. Yadav, Der Pharma Chem., 6, 352 (2014).
- M.M.H. Mumtaz, B.K. Ishwar, B.C. Reva Siddappa and D.R. Bharathi, Int. J. Pharm. Pharm. Sci., 5, 471 (2013).
- K.Y. Shaik, D. Vidyasagar and B.S. Afzal, Res. J. Pharm. Biol. Chem. Sci., 6, 173 (2015).
- B.V. Subrahmanya Lokesh, Y.R. Prasad and A.B. Shaik, Indian J. Pharm. Educ. Res., 51(4S), S679 (2017); https://doi.org/10.5530/ijper.51.4s.99.
- J. Ni and D. Hollander, J. Clin. Lab. Anal., 10, 42 (1996); https://doi.org/10.1002/(SICI)1098-2825(1996)10:1<42::AIDJCLA7>3.0.CO;2-N.
- G.M. Morris and M. Lim-Wilby, Methods Mol. Biol., 443, 365 (2008).
- S. Goto, K. Jo, T. Kawakita, S. Misuhashi, T. Nishino, N. Oshawa and H. Tanami, Chemotherapy, 29, 76 (1981).
- J.L. Watts and C.J. Lindeman, Antimicrobial Susceptibility Testing of Bacteria of Veterinary Origin. Antimicrobial Resistance in Bacteria of Animal Origin, FM Aarestrup, ASM Press: Washington DC, USA, Chap. 3 (2006).
- B.A. Waisbren, C. Carr and J. Dunnette, Am. J. Clin. Pathol., 21, 884 (1951); https://doi.org/10.1093/ajcp/21.9_ts.884.
- R.R. Shah, R.D. Mehta and A.R. Parikh, J. Indian Chem. Soc., 62, 255 (1985).
- T. Mosmann, J. Imm. Meth., 65, 55 (1983).
- M.C. Alley, Cancer Res., 48, 589 (1998).
References
S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir and J. Vaya, Bioorg. Med. Chem., 13, 433 (2005); https://doi.org/10.1016/j.bmc.2004.10.010.
M. Cushman and D. Nagarathnam, J. Nat. Prod., 54, 1656 (1991); https://doi.org/10.1021/np50078a027.
S.K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L.C. Mishra and V.K. Bhasin, Med. Chem. Res., 18, 407 (2009); https://doi.org/10.1007/s00044-008-9137-9.
S.S. Lim, H.S. Kim and D.U. Lee, Bull. Korean Chem. Soc., 28, 2495 (2007); https://doi.org/10.5012/bkcs.2007.28.12.2495.
M. Kidwai, S. Saxena, S. Rastogi and R. Venkataramanan, Curr. Med. Chem., 2, 269 (2003); https://doi.org/10.2174/1568012033483015.
F.A. Abbas and H.Z. Ezzat, Int. J. ChemTech Res., 9, 206 (2016).
M. Ramachander, G. Swetha, B. Deepthi and S. Kalyani, Int. J. ChemTech. Res., 8, 88 (2015).
H. Dansena, H.J. Dhongade and K. Chandrakar, Asian J. Pharm. Clin. Res., 8, 171 (2015).
S.Y. Hassan, J. Braz. Chem. Soc., 22, 1286 (2011); https://doi.org/10.1590/S0103-50532011000700014.
P.K. Padarthi, S. Sridhar, K. Jagatheesh and E. Namasivayam, Int. J. Res. Ayurveda Pharm., 4, 355 (2013); https://doi.org/10.7897/2277-4343.04310.
S. Sridhar, Y. Rajendra Prasad and S.C. Dinda, Int. J. Pharm. Sci. Res., 2, 2562 (2011).
A.R. Trivedi, D.K. Dodiya, N.R. Ravat and V.H. Shah, ARKIVOC, 131 (2008); https://doi.org/10.3998/ark.5550190.0009.b13.
M. Kachroo, R. Panda and Y. Yadav, Der Pharma Chem., 6, 352 (2014).
M.M.H. Mumtaz, B.K. Ishwar, B.C. Reva Siddappa and D.R. Bharathi, Int. J. Pharm. Pharm. Sci., 5, 471 (2013).
K.Y. Shaik, D. Vidyasagar and B.S. Afzal, Res. J. Pharm. Biol. Chem. Sci., 6, 173 (2015).
B.V. Subrahmanya Lokesh, Y.R. Prasad and A.B. Shaik, Indian J. Pharm. Educ. Res., 51(4S), S679 (2017); https://doi.org/10.5530/ijper.51.4s.99.
J. Ni and D. Hollander, J. Clin. Lab. Anal., 10, 42 (1996); https://doi.org/10.1002/(SICI)1098-2825(1996)10:1<42::AIDJCLA7>3.0.CO;2-N.
G.M. Morris and M. Lim-Wilby, Methods Mol. Biol., 443, 365 (2008).
S. Goto, K. Jo, T. Kawakita, S. Misuhashi, T. Nishino, N. Oshawa and H. Tanami, Chemotherapy, 29, 76 (1981).
J.L. Watts and C.J. Lindeman, Antimicrobial Susceptibility Testing of Bacteria of Veterinary Origin. Antimicrobial Resistance in Bacteria of Animal Origin, FM Aarestrup, ASM Press: Washington DC, USA, Chap. 3 (2006).
B.A. Waisbren, C. Carr and J. Dunnette, Am. J. Clin. Pathol., 21, 884 (1951); https://doi.org/10.1093/ajcp/21.9_ts.884.
R.R. Shah, R.D. Mehta and A.R. Parikh, J. Indian Chem. Soc., 62, 255 (1985).
T. Mosmann, J. Imm. Meth., 65, 55 (1983).
M.C. Alley, Cancer Res., 48, 589 (1998).