Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Hydrothermal Synthesis of Graphene Quantum Dots Modified Carbon Paste Electrode as an Efficient Electro Sensor Towards L-Ascorbic Acid
Corresponding Author(s) : Ravichandran Kulandaivelu
Asian Journal of Chemistry,
Vol. 31 No. 6 (2019): Vol 31 Issue 6
Abstract
The tremendous electronic assets of graphene, with its charge carriers parroting relativistic graphene quantum dots and its potential in numerous applications, have ensured a hasty evolution of interest in this ground-breaking material. The graphene quantum dots, in the size range of 1-5 nm, showed 0 D morphology, which exists with few atomic layers of wideness and have zigzag edge structure. Herein, We report on electrochemical behaviour of graphene quantum dots modified electrode that hold edges and basal plane content, accelerated the anodic peak current with a sensitivity of about 0.68 mA mM–1 and offers 1.4 times higher sensitivity towards the oxidation of ascorbic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
- R.K. Gupta, Z.A. Alahmed and F. Yakuphanoglu, Mater. Lett., 112, 75 (2013); https://doi.org/10.1016/j.matlet.2013.09.011.
- A.A. Ensaû, M. Jafari-Asl and B. Rezaei, J. Electroanal. Chem., 731, 20 (2014); https://doi.org/10.1016/j.jelechem.2014.07.037.
- B.N. Patil and S.A. Acharya, Adv. Mat. Lett., 5, 113 (2014); https://doi.org/10.5185/amlett.2013.fdm.16.
- S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
- R.L. McCreery, Chem. Rev., 108, 2646 (2008); https://doi.org/10.1021/cr068076m.
- E.P. Randviir, D.A.C. Brownson, M. Gómez-Mingot, D.K. Kampouris, J. Iniesta and C.E. Banks, Nanoscale, 4, 6470 (2012); https://doi.org/10.1039/c2nr31823g.
- L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.-J. Zhu, Nanoscale, 2013, 4015 (2013); https://doi.org/10.1039/C3NR33849E.
- M. Yang, S. Moriyama and M. Higuchi, J. Nanosci. Nanotechnol., 14, 2974 (2014); https://doi.org/10.1166/jnn.2014.8578.
- S.N. Baker and G.A. Baker, Angew. Chem. Int. Ed., 49, 6726 (2010); https://doi.org/10.1002/anie.200906623.
- D. Pan, J. Zhang, Z. Li and M. Wu, Adv. Mater., 22, 734 (2010); https://doi.org/10.1002/adma.200902825.
- F. Sekli-Belaidi, P. Temple-Boyer and P. Gros, J. Electroanal. Chem., 647, 159 (2010); https://doi.org/10.1016/j.jelechem.2010.06.007.
- D. Manoj, D. Satheesh and J. Santhanalakshmi, Trans. Indian Inst. Metals, 64, 195 (2011); https://doi.org/10.1007/s12666-011-0038-0.
- D.W. Hatchett and M. Josowicz, Chem. Rev., 108, 746 (2008); https://doi.org/10.1021/cr068112h.
- Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 130, 5856 (2008); https://doi.org/10.1021/ja800745y.
- D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao, Chem. Mater., 21, 3136 (2009); https://doi.org/10.1021/cm900395k.
- J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, New J. Chem., 36, 97 (2012); https://doi.org/10.1039/C1NJ20658C.
- S.M. Ghoreishi, M. Behpour, M. Khayatkashani and M.H. Motaghedifard, Anal. Methods, 3, 636 (2011); https://doi.org/10.1039/c0ay00691b.
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys. Rev. Lett., 97, 187401 (2006); https://doi.org/10.1103/PhysRevLett.97.187401.
- A.C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000); https://doi.org/10.1103/PhysRevB.61.14095.
- J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso and J.M.D. Tascón, Langmuir, 25, 5957 (2009); https://doi.org/10.1021/la804216z.
- D. Satheesh, S. Shanmugam and K. Ravichandran, Mater. Lett., 137, 153 (2014); https://doi.org/10.1016/j.matlet.2014.08.147.
- S. Kaveri and J. Ramasamy, Mater. Lett., 113, 5 (2006); https://doi.org/10.1016/j.matlet.2013.09.044.
References
K.S. Novoselov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896.
R.K. Gupta, Z.A. Alahmed and F. Yakuphanoglu, Mater. Lett., 112, 75 (2013); https://doi.org/10.1016/j.matlet.2013.09.011.
A.A. Ensaû, M. Jafari-Asl and B. Rezaei, J. Electroanal. Chem., 731, 20 (2014); https://doi.org/10.1016/j.jelechem.2014.07.037.
B.N. Patil and S.A. Acharya, Adv. Mat. Lett., 5, 113 (2014); https://doi.org/10.5185/amlett.2013.fdm.16.
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969.
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034.
R.L. McCreery, Chem. Rev., 108, 2646 (2008); https://doi.org/10.1021/cr068076m.
E.P. Randviir, D.A.C. Brownson, M. Gómez-Mingot, D.K. Kampouris, J. Iniesta and C.E. Banks, Nanoscale, 4, 6470 (2012); https://doi.org/10.1039/c2nr31823g.
L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.-J. Zhu, Nanoscale, 2013, 4015 (2013); https://doi.org/10.1039/C3NR33849E.
M. Yang, S. Moriyama and M. Higuchi, J. Nanosci. Nanotechnol., 14, 2974 (2014); https://doi.org/10.1166/jnn.2014.8578.
S.N. Baker and G.A. Baker, Angew. Chem. Int. Ed., 49, 6726 (2010); https://doi.org/10.1002/anie.200906623.
D. Pan, J. Zhang, Z. Li and M. Wu, Adv. Mater., 22, 734 (2010); https://doi.org/10.1002/adma.200902825.
F. Sekli-Belaidi, P. Temple-Boyer and P. Gros, J. Electroanal. Chem., 647, 159 (2010); https://doi.org/10.1016/j.jelechem.2010.06.007.
D. Manoj, D. Satheesh and J. Santhanalakshmi, Trans. Indian Inst. Metals, 64, 195 (2011); https://doi.org/10.1007/s12666-011-0038-0.
D.W. Hatchett and M. Josowicz, Chem. Rev., 108, 746 (2008); https://doi.org/10.1021/cr068112h.
Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 130, 5856 (2008); https://doi.org/10.1021/ja800745y.
D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang and Z. Jiao, Chem. Mater., 21, 3136 (2009); https://doi.org/10.1021/cm900395k.
J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, New J. Chem., 36, 97 (2012); https://doi.org/10.1039/C1NJ20658C.
S.M. Ghoreishi, M. Behpour, M. Khayatkashani and M.H. Motaghedifard, Anal. Methods, 3, 636 (2011); https://doi.org/10.1039/c0ay00691b.
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys. Rev. Lett., 97, 187401 (2006); https://doi.org/10.1103/PhysRevLett.97.187401.
A.C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000); https://doi.org/10.1103/PhysRevB.61.14095.
J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso and J.M.D. Tascón, Langmuir, 25, 5957 (2009); https://doi.org/10.1021/la804216z.
D. Satheesh, S. Shanmugam and K. Ravichandran, Mater. Lett., 137, 153 (2014); https://doi.org/10.1016/j.matlet.2014.08.147.
S. Kaveri and J. Ramasamy, Mater. Lett., 113, 5 (2006); https://doi.org/10.1016/j.matlet.2013.09.044.