Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Combined Experimental (FT-IR) and Computational Studies of 9-Chloroanthracene
Corresponding Author(s) : Jyothi Prashanth
Asian Journal of Chemistry,
Vol. 31 No. 6 (2019): Vol 31 Issue 6
Abstract
The experimental FT-IR spectral analysis of 9-chloroanthracene has worked out by using density functional theory (DFT). The optimized molecular structure and minimum energy of 9-chloroanthracene has analyzed using DFT/B3LYP functional employing 6-311++G(d,p) basis set. The vibrational frequencies along with IR intensities were computed, scaling was used for a better fit between the experimental and computed frequencies, they agreed with rms error 8.48 cm-1 for 9-chloroanthracene. The NLO behaviour of the molecule is investigated from first-order hyperpolarizability. The HOMO and LUMO energies are evaluated to demonstrate the chemical stability, reactivity of molecule. The MESP over the molecules were plotted to evaluate electron density regions and thermodynamic parameters are calculated. Hyper conjugative interactions and charge delocalization of the molecule study from NBO analysis and Fukui functions are evaluated for 9-chloroanthracene. The molecular docking studies were performed against anticancer protein targets Tyrosinase and HER2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Saleem, M. Rafiq and M. Hanif, J. Fluoresc., 27, 31 (2017); https://doi.org/10.1007/s10895-016-1933-x.
- Y. Jiao, B. Zhu, J. Chen and X. Duan, Theranostics, 5, 173 (2015); https://doi.org/10.7150/thno.9860.
- Y. Jeong and J. Yoon, Inorg. Chim. Acta, 381, 2 (2012); https://doi.org/10.1016/j.ica.2011.09.011.
- B. Angelov, A. Angelova and R. Ionov, J. Phys. Chem. B, 104, 9140 (2000); https://doi.org/10.1021/jp993779b.
- A.P. de Silva, H. Gunaratne, T. Gunnlaugsson and P. Lynch, New J. Chem., 20, 871 (1996).
- G.R. Martinez, F. Garcia, L.H. Catalani, J. Cadet, M.C.B. Oliveira, G.E. Ronsein, S. Miyamoto, M.H.G. Medeiros and P.D. Mascio, Tetrahedron, 62, 10762 (2006); https://doi.org/10.1016/j.tet.2006.08.094.
- L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu and C. Zhang, Dyes Pigments, 126, 232 (2016); https://doi.org/10.1016/j.dyepig.2015.11.028.
- H. Moon, Y.W. Jun, D. Kim, H.G. Ryu, T. Wang, K.H. Kim, Y. Huh, J. Jung and K.H. Ahn, Chem. Asian J., 11, 2518 (2016); https://doi.org/10.1002/asia.201600986.
- F.A. Tanious, T.C. Jenkins, S. Neidle and W.D. Wilson, Biochemistry, 31, 11632 (1992); https://doi.org/10.1021/bi00161a050.
- S.K. Carter, F.M. Schabel Jr., L.E. Broder and T.P. Johnston, Adv. Cancer Res., 16, 273 (1972).
- S.A. De Silva, A. Zavaleta, D.E. Baron, O. Allam, E.V. Isidor, N. Kashimura and J.M. Percarpio, Tetrahedron Lett., 38, 2237 (1997); https://doi.org/10.1016/S0040-4039(97)00332-8.
- J.W. Sidman, J. Chem. Phys., 25, 115 (1956); https://doi.org/10.1063/1.1742800.
- S. Kou, H. Zhou, G. Tang, R. Li, Y. Zhang, J. Zhao and C. Wei, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 96, 768 (2012); https://doi.org/10.1016/j.saa.2012.07.007.
- I. Turowska-Tyrk and K. Grzesniak, Acta Cryst., C60, o146 (2004); https://doi.org/10.1107/S0108270103026775.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc.: Wallingford CT (2009).
- http://autodock.scripps.edu/resources/references.
- S. Diego, Accelrys Software Inc., Discovery Studio Modeling Environment, Release 4.1.0, Accelrys Software Inc, USA (2013).
- G. Fogarasi, X. Zhou, P.W. Taylor and P. Pulay, J. Am. Chem. Soc., 114, 8191 (1992); https://doi.org/10.1021/ja00047a032.
- G. Fogarasi, P. Pulay and J.R. Durig, Vibrational Spectra and Structure, Elsevier: New York, vol. 14 (1991).
- T. Sundius, J. Mol. Struct., 218, 321 (1990); https://doi.org/10.1016/0022-2860(90)80287-T.
- T. Sundius, Vib. Spectrosc., 29, 89 (2002); https://doi.org/10.1016/S0924-2031(01)00189-8.
- P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); https://doi.org/10.1021/ja00362a005.
- A. Berces and T. Ziegler, J. Chem. Phys., 98, 4793 (1993); https://doi.org/10.1063/1.464983.
- G. Fogarasi, P. Pulay and J.R. Durig, Vibrational Spectra and Structure, Elsevier: Amsterdam, vol. 4 (1985).
- J.B. Foresman and A. Frisch, Exploring Chemistry with Electronics Structure Methods, Gaussian Inc.: Pittsburg, PA, edn 2 (1996).
- J. Prashanth, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1117, 79 (2016); https://doi.org/10.1016/j.molstruc.2016.03.062.
- J.K. Ojha, B.V. Reddy and G.R. Rao, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 96, 632 (2012); https://doi.org/10.1016/j.saa.2012.06.035.
- T. Joseph, H.T. Varghese, C.Y. Panicker, K. Thiemann, K. Viswanathan, C. Van Alsenoy and T.K. Manojkumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 117, 413 (2014); https://doi.org/10.1016/j.saa.2013.08.016.
- D. Kafer, G. Witte, P. Cyganik, A. Terfort and C. Woll, J. Am. Chem. Soc., 128, 1723 (2006); https://doi.org/10.1021/ja0571592.
- P. Pavitha, J. Prashanth, G. Ramu, G. Ramesh, K. Mamatha and B.V. Reddy, J. Mol. Struct., 1147, 406 (2017); https://doi.org/10.1016/j.molstruc.2017.06.095.
- J.V. Lockard, A. Butler Ricks, D.T. Co and M.R. Wasielewski, Phys. Chem. Lett., 1, 215 (2010); https://doi.org/10.1021/jz900136a.
- M. Kumar, S. Roy, M.S.H. Faizi, S. Kumar, M.K. Singh, S. Kishor, S.C. Peter and R.P. John, J. Mol. Struct., 1128, 195 (2017); https://doi.org/10.1016/j.molstruc.2016.08.004.
- S.J.R. Xavier and A. William, Proc. Indian Natl. Sci. Acad., 59A, 215 (1993).
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: New York (1976).
- D.F.V. Lewis, C. Ioannides and D.V. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243.
- R.J. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
- N. Ozdemir, B. Eren, M. Dincer and V. Bekdemir, Mol. Phys., 108, 13 (2010); https://doi.org/10.1080/00268970903476688.
- P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley: New York (1991).
- F. Meyers, S.R. Marder, B.M. Pierce and J.L. Bredas, J. Am. Ceram. Soc., 116, 10703 (1994).
- F. Hinchliffe and R.W. Munn, Molecular Electromagnetism, John Wiley & Sons Ltd.: Chichester (1985).
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977.
- R. Zhang, B. Du, G. Sun and Y.X. Sun, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067.
- M. Arivazhagan and S. Jeyavijayan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 79, 376 (2011); https://doi.org/10.1016/j.saa.2011.03.036.
- P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Elecrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic and Biological Systems, Plenum Press: New York (1981).
- E. Scrocco and J. Tomasi, J. Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1.
- P. Politzer and K.C. Daiker, ed.: B.M. Deb, Models for chemical reactivity, In: The Force Concept in Chemistry, Van Nostrand Reinhold: New York (1981).
- V. Balachandran and V. Karunakaran, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 106, 284 (2013); https://doi.org/10.1016/j.saa.2012.12.070.
- L. Rajith, A.K. Jissy, K.G. Kumar and A. Datta, J. Phys. Chem. C, 115, 21858 (2011); https://doi.org/10.1021/jp208027s.
- E.D. Glendening, A.E. Reed, J.E. Carpenter and F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin: Madison (1998).
- S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 75, 941 (2010); https://doi.org/10.1016/j.saa.2009.11.030.
- G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand: New York (1945).
- K.S. Pitzer and W.D. Gwinn, J. Chem. Phys., 10, 428 (1942); https://doi.org/10.1063/1.1723744.
- R. Konakanchi, J. Haribabu, J. Prashanth, V.B. Nishtala, R. Mallela, S. Manchala, D. Gandamalla, R. Karvembu, B.V. Reddy, N.R. Yellu and L.R. Kotha, Appl. Organomet. Chem., 32, e4415 (2018); https://doi.org/10.1002/aoc.4415.
- R.S. Herbst, Int. J. Radiat. Oncol. Biol. Phys., 59, S21 (2004); https://doi.org/10.1016/j.ijrobp.2003.11.041.
- J. Sebastian, R.G. Richards, M.P. Walker, J.F. Wiesen, Z. Werb, R. Derynck, Y.K. Hom, G.R. Cunha and R.P. Di Augustine, Cell Growth Differ., 9, 777 (1998).
- R. Konakanchi, R. Mallela, R. Guda and L.R. Kotha, Res. Chem. Intermed., 44, 27 (2017); https://doi.org/10.1007/s11164-017-3089-y.
- R. Mallela, R. Konakanchi, R. Guda, N. Munirathinam, D. Gandamalla, N.R. Yellu and L.R. Kotha, Inorg. Chim. Acta, 469, 66 (2018); https://doi.org/10.1016/j.ica.2017.08.042.
- R.G. Parr and W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
- P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039.
- R.G. Parr and W.J. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
- P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u.
- T.J. Beaula, I.H. Joe, V.K. Rastogi and V.B. Jothy, Chem. Phys. Lett., 624, 93 (2015); https://doi.org/10.1016/j.cplett.2015.02.026.
- C.S. Abraham, J.C. Prasana and S. Muthu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045.
References
M. Saleem, M. Rafiq and M. Hanif, J. Fluoresc., 27, 31 (2017); https://doi.org/10.1007/s10895-016-1933-x.
Y. Jiao, B. Zhu, J. Chen and X. Duan, Theranostics, 5, 173 (2015); https://doi.org/10.7150/thno.9860.
Y. Jeong and J. Yoon, Inorg. Chim. Acta, 381, 2 (2012); https://doi.org/10.1016/j.ica.2011.09.011.
B. Angelov, A. Angelova and R. Ionov, J. Phys. Chem. B, 104, 9140 (2000); https://doi.org/10.1021/jp993779b.
A.P. de Silva, H. Gunaratne, T. Gunnlaugsson and P. Lynch, New J. Chem., 20, 871 (1996).
G.R. Martinez, F. Garcia, L.H. Catalani, J. Cadet, M.C.B. Oliveira, G.E. Ronsein, S. Miyamoto, M.H.G. Medeiros and P.D. Mascio, Tetrahedron, 62, 10762 (2006); https://doi.org/10.1016/j.tet.2006.08.094.
L. Yang, Y. Liu, X. Zhou, Y. Wu, C. Ma, W. Liu and C. Zhang, Dyes Pigments, 126, 232 (2016); https://doi.org/10.1016/j.dyepig.2015.11.028.
H. Moon, Y.W. Jun, D. Kim, H.G. Ryu, T. Wang, K.H. Kim, Y. Huh, J. Jung and K.H. Ahn, Chem. Asian J., 11, 2518 (2016); https://doi.org/10.1002/asia.201600986.
F.A. Tanious, T.C. Jenkins, S. Neidle and W.D. Wilson, Biochemistry, 31, 11632 (1992); https://doi.org/10.1021/bi00161a050.
S.K. Carter, F.M. Schabel Jr., L.E. Broder and T.P. Johnston, Adv. Cancer Res., 16, 273 (1972).
S.A. De Silva, A. Zavaleta, D.E. Baron, O. Allam, E.V. Isidor, N. Kashimura and J.M. Percarpio, Tetrahedron Lett., 38, 2237 (1997); https://doi.org/10.1016/S0040-4039(97)00332-8.
J.W. Sidman, J. Chem. Phys., 25, 115 (1956); https://doi.org/10.1063/1.1742800.
S. Kou, H. Zhou, G. Tang, R. Li, Y. Zhang, J. Zhao and C. Wei, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 96, 768 (2012); https://doi.org/10.1016/j.saa.2012.07.007.
I. Turowska-Tyrk and K. Grzesniak, Acta Cryst., C60, o146 (2004); https://doi.org/10.1107/S0108270103026775.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian Inc.: Wallingford CT (2009).
http://autodock.scripps.edu/resources/references.
S. Diego, Accelrys Software Inc., Discovery Studio Modeling Environment, Release 4.1.0, Accelrys Software Inc, USA (2013).
G. Fogarasi, X. Zhou, P.W. Taylor and P. Pulay, J. Am. Chem. Soc., 114, 8191 (1992); https://doi.org/10.1021/ja00047a032.
G. Fogarasi, P. Pulay and J.R. Durig, Vibrational Spectra and Structure, Elsevier: New York, vol. 14 (1991).
T. Sundius, J. Mol. Struct., 218, 321 (1990); https://doi.org/10.1016/0022-2860(90)80287-T.
T. Sundius, Vib. Spectrosc., 29, 89 (2002); https://doi.org/10.1016/S0924-2031(01)00189-8.
P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983); https://doi.org/10.1021/ja00362a005.
A. Berces and T. Ziegler, J. Chem. Phys., 98, 4793 (1993); https://doi.org/10.1063/1.464983.
G. Fogarasi, P. Pulay and J.R. Durig, Vibrational Spectra and Structure, Elsevier: Amsterdam, vol. 4 (1985).
J.B. Foresman and A. Frisch, Exploring Chemistry with Electronics Structure Methods, Gaussian Inc.: Pittsburg, PA, edn 2 (1996).
J. Prashanth, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1117, 79 (2016); https://doi.org/10.1016/j.molstruc.2016.03.062.
J.K. Ojha, B.V. Reddy and G.R. Rao, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 96, 632 (2012); https://doi.org/10.1016/j.saa.2012.06.035.
T. Joseph, H.T. Varghese, C.Y. Panicker, K. Thiemann, K. Viswanathan, C. Van Alsenoy and T.K. Manojkumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 117, 413 (2014); https://doi.org/10.1016/j.saa.2013.08.016.
D. Kafer, G. Witte, P. Cyganik, A. Terfort and C. Woll, J. Am. Chem. Soc., 128, 1723 (2006); https://doi.org/10.1021/ja0571592.
P. Pavitha, J. Prashanth, G. Ramu, G. Ramesh, K. Mamatha and B.V. Reddy, J. Mol. Struct., 1147, 406 (2017); https://doi.org/10.1016/j.molstruc.2017.06.095.
J.V. Lockard, A. Butler Ricks, D.T. Co and M.R. Wasielewski, Phys. Chem. Lett., 1, 215 (2010); https://doi.org/10.1021/jz900136a.
M. Kumar, S. Roy, M.S.H. Faizi, S. Kumar, M.K. Singh, S. Kishor, S.C. Peter and R.P. John, J. Mol. Struct., 1128, 195 (2017); https://doi.org/10.1016/j.molstruc.2016.08.004.
S.J.R. Xavier and A. William, Proc. Indian Natl. Sci. Acad., 59A, 215 (1993).
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: New York (1976).
D.F.V. Lewis, C. Ioannides and D.V. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243.
R.J. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
N. Ozdemir, B. Eren, M. Dincer and V. Bekdemir, Mol. Phys., 108, 13 (2010); https://doi.org/10.1080/00268970903476688.
P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley: New York (1991).
F. Meyers, S.R. Marder, B.M. Pierce and J.L. Bredas, J. Am. Ceram. Soc., 116, 10703 (1994).
F. Hinchliffe and R.W. Munn, Molecular Electromagnetism, John Wiley & Sons Ltd.: Chichester (1985).
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977.
R. Zhang, B. Du, G. Sun and Y.X. Sun, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067.
M. Arivazhagan and S. Jeyavijayan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 79, 376 (2011); https://doi.org/10.1016/j.saa.2011.03.036.
P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Elecrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic and Biological Systems, Plenum Press: New York (1981).
E. Scrocco and J. Tomasi, J. Adv. Quantum Chem., 11, 115 (1978); https://doi.org/10.1016/S0065-3276(08)60236-1.
P. Politzer and K.C. Daiker, ed.: B.M. Deb, Models for chemical reactivity, In: The Force Concept in Chemistry, Van Nostrand Reinhold: New York (1981).
V. Balachandran and V. Karunakaran, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 106, 284 (2013); https://doi.org/10.1016/j.saa.2012.12.070.
L. Rajith, A.K. Jissy, K.G. Kumar and A. Datta, J. Phys. Chem. C, 115, 21858 (2011); https://doi.org/10.1021/jp208027s.
E.D. Glendening, A.E. Reed, J.E. Carpenter and F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin: Madison (1998).
S. Sebastian and N. Sundaraganesan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 75, 941 (2010); https://doi.org/10.1016/j.saa.2009.11.030.
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand: New York (1945).
K.S. Pitzer and W.D. Gwinn, J. Chem. Phys., 10, 428 (1942); https://doi.org/10.1063/1.1723744.
R. Konakanchi, J. Haribabu, J. Prashanth, V.B. Nishtala, R. Mallela, S. Manchala, D. Gandamalla, R. Karvembu, B.V. Reddy, N.R. Yellu and L.R. Kotha, Appl. Organomet. Chem., 32, e4415 (2018); https://doi.org/10.1002/aoc.4415.
R.S. Herbst, Int. J. Radiat. Oncol. Biol. Phys., 59, S21 (2004); https://doi.org/10.1016/j.ijrobp.2003.11.041.
J. Sebastian, R.G. Richards, M.P. Walker, J.F. Wiesen, Z. Werb, R. Derynck, Y.K. Hom, G.R. Cunha and R.P. Di Augustine, Cell Growth Differ., 9, 777 (1998).
R. Konakanchi, R. Mallela, R. Guda and L.R. Kotha, Res. Chem. Intermed., 44, 27 (2017); https://doi.org/10.1007/s11164-017-3089-y.
R. Mallela, R. Konakanchi, R. Guda, N. Munirathinam, D. Gandamalla, N.R. Yellu and L.R. Kotha, Inorg. Chim. Acta, 469, 66 (2018); https://doi.org/10.1016/j.ica.2017.08.042.
R.G. Parr and W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
P.W. Ayers and R.G. Parr, J. Am. Chem. Soc., 122, 2010 (2000); https://doi.org/10.1021/ja9924039.
R.G. Parr and W.J. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u.
T.J. Beaula, I.H. Joe, V.K. Rastogi and V.B. Jothy, Chem. Phys. Lett., 624, 93 (2015); https://doi.org/10.1016/j.cplett.2015.02.026.
C.S. Abraham, J.C. Prasana and S. Muthu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045.