Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral Characterization and Antibacterial Activity of Copper(II) Complexes of Functionalized Hydrazones
Corresponding Author(s) : K. Hussain Reddy
Asian Journal of Chemistry,
Vol. 31 No. 6 (2019): Vol 31 Issue 6
Abstract
Copper(II) complexes having the formula CuL2 {where, L = 2-acetylthiophene acetoylhydrazone (ATAH), 2-acetylthiophene benzoylhydrazone (ATBH)} have been investigated on the basis of elemental analysis, molar conductivity measurements, magnetic susceptibility, UV-visible, IR and ESR spectral data. Non-electrolytic nature of the complexes are revealed by molar conductance data. IR spectral data suggested that hydrazones act as tridentate ligands. The spin Hamiltonian, orbital reduction and bonding parameters of complexes are calculated using ESR spectra of complexes. The compounds are screened for their antibacterial activities against Pseudomonas aureoginos and Bacillus cereus. Acetoylhydrazones show more antibacterial activity than the corresponding benzoyl hydrazones. Some of the Cu(II) complexes show more activity than hydrazone ligands.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.H. Reddy, Bioinorganic Chemistry, New Age International Publishers: New Delhi, p. 176 (2003).
- G. Grass, C. Rensing and M. Solioz, Appl. Environ. Microbiol., 77, 1541 (2011); https://doi.org/10.1128/AEM.02766-10.
- I.P. Ejidike and P.A. Ajibade, Rev. Inorg. Chem., 35, 191 (2015); https://doi.org/10.1515/revic-2015-0007.
- S. Rollas and S. Kücükgüzel, Molecules, 12, 1910 (2007); https://doi.org/10.3390/12081910.
- L.N. Suvarapu, Y.K. Seo, S.-O. Baek and V.R. Ammireddy, E-J. Chem., 9, 1288 (2012); https://doi.org/10.1155/2012/534617.
- H.A. Ghazy Mostafa, S.A. El-farra and A.S. Fouda, Indian J. Chem. Technol., 11, 787 (2004).
- M.R. Maurya, C. Haldar, A. Kumar, M.L. Kuznetsov, F. Avecilla and J. Costa Pessoa, Dalton Trans., 42, 11941 (2013); https://doi.org/10.1039/c3dt50469g.
- J. Yadav, J.S.N. Pandeya and S.P. Singh, J. Chem. Pharm. Res., 2, 558 (2010).
- L.S. Lerman, J. Mol. Biol., 3, 18 (1961); https://doi.org/10.1016/S0022-2836(61)80004-1.
- R.L. Dutta and M.M. Hossain, J. Sci. Ind. Res., 33, 635 (1985).
- Y. Shechter, I. Goldwash, M. Micronchik, M. Fridkin and D. Gefel, Coord. Chem. Rev., 237, 3 (2003); https://doi.org/10.1016/S0010-8545(02)00302-8.
- D. Rehder, Inorg. Chem. Commun., 6, 604 (2003); https://doi.org/10.1016/S1387-7003(03)00050-9.
- K.H. Thompson and C. Orvig, Coord. Chem. Rev., 219-221, 1033 (2001); https://doi.org/10.1016/S0010-8545(01)00395-2.
- G. Verquin, G. Fontaine, M. Bria, E. Zhilinskaya, E. Abi-Aad, A. Aboukaïs, B. Baldeyrou, C. Bailly and J.-L. Bernier, J. Biol. Inorg. Chem., 9, 345 (2004); https://doi.org/10.1007/s00775-004-0529-0.
- N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Synth. React. Inorg. Met.-Org. Chem., 34, 17 (2004); https://doi.org/10.1081/SIM-120027315.
- M.M.E. Shakdofa, M.H. Shtaiwi, N. Morsy and T.M.A. Abdel-rassel, Main Group Chem., 13, 187 (2014); https://doi.org/10.3233/MGC-140133.
- A.A. Recio Despaigne, J.G. Da Silva, A.C.M. Do Carmo, O.E. Piro, E.E. Castellano and H. Beraldo, J. Mol. Struct., 920, 97 (2009); https://doi.org/10.1016/j.molstruc.2008.10.025.
- Y.J. Jang, U.K. Lee and B.K. Koo, Bull. Korean Chem. Soc., 26, 925 (2005); https://doi.org/10.5012/bkcs.2005.26.6.925.
- K. Raja, A. Suseelamma and K.H. Reddy, J. Chem. Sci., 128, 1265 (2016); https://doi.org/10.1007/s12039-016-1125-x.
- K. Raja, A. Suseelamma and K.H. Reddy, J. Chem. Sci., 128, 23 (2016); https://doi.org/10.1007/s12039-015-1003-y.
- K. Raja, A. Suseelamma and K.H. Reddy, J. Iran. Chem. Soc., 12, 1473 (2015); https://doi.org/10.1007/s13738-015-0624-x.
- K.H. Reddy, K. Raja and A. Suseelamma, Inorg. Nano-Metal Chem., 47, 1398 (2017); https://doi.org/10.1080/24701556.2017.1284129.
- M. Pragathi and K.H. Reddy, Asian J. Chem., 31, 148 (2019); https://doi.org/10.14233/ajchem.2019.21558.
- P. Hari Babu and K.H. Reddy, Indian J. Chem., 52A, 327 (2013).
- M. Pragahi and K.H. Reddy, Indian J. Chem., 52A, 845 (2013).
- M. Pragathi and K.H. Reddy, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010.
- P. Haribabu, Y.P. Patil, K.H. Reddy and M. Nethaji, Transition Met. Chem., 39, 167 (2014); https://doi.org/10.1007/s11243-013-9786-5.
- H. Pagonda, P.P. Yogesh, H.R. Katreddi and N. Munirathinam, Inorg. Chim. Acta, 392, 478 (2012); https://doi.org/10.1016/j.ica.2012.03.042.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
- D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
- N. Raman, A. Kulandaisamy and K. Jayesubramanian, Indian J. Chem., 41A, 942 (2002).
- S.M. Mamdoush, S.M. Abou Elenein and H.M. Kamel, Indian J. Chem., 41A, 297 (2002).
- R.S. Giordano and R.D. Bereman, J. Am. Chem Soc., 96, 1019 (1974); https://doi.org/10.1021/ja00811a012.
- R.V. Prasad and N.V. Thakkar, J. Mol. Catal., 92, 9 (1994); https://doi.org/10.1016/0304-5102(94)00063-8.
- S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet and J.-P. Bouchara, J. Inorg. Biochem., 102, 63 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.001.
- N. Dharmaraj, P. Viswanathamurthi and K. Natarajan, Transition Met. Chem., 26, 105 (2001); https://doi.org/10.1023/A:1007132408648.
- B.G. Tweedy, Phytopathology, 55, 910 (1964).
- M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja and T. Jeyakumar, Indian J. Pharm. Sci., 72, 216 (2010); https://doi.org/10.4103/0250-474X.65015.
- Z.H. Chohan, A.K. Misbahul and M. Moazzam, Indian J. Chem., 27A, 1102 (1988).
References
K.H. Reddy, Bioinorganic Chemistry, New Age International Publishers: New Delhi, p. 176 (2003).
G. Grass, C. Rensing and M. Solioz, Appl. Environ. Microbiol., 77, 1541 (2011); https://doi.org/10.1128/AEM.02766-10.
I.P. Ejidike and P.A. Ajibade, Rev. Inorg. Chem., 35, 191 (2015); https://doi.org/10.1515/revic-2015-0007.
S. Rollas and S. Kücükgüzel, Molecules, 12, 1910 (2007); https://doi.org/10.3390/12081910.
L.N. Suvarapu, Y.K. Seo, S.-O. Baek and V.R. Ammireddy, E-J. Chem., 9, 1288 (2012); https://doi.org/10.1155/2012/534617.
H.A. Ghazy Mostafa, S.A. El-farra and A.S. Fouda, Indian J. Chem. Technol., 11, 787 (2004).
M.R. Maurya, C. Haldar, A. Kumar, M.L. Kuznetsov, F. Avecilla and J. Costa Pessoa, Dalton Trans., 42, 11941 (2013); https://doi.org/10.1039/c3dt50469g.
J. Yadav, J.S.N. Pandeya and S.P. Singh, J. Chem. Pharm. Res., 2, 558 (2010).
L.S. Lerman, J. Mol. Biol., 3, 18 (1961); https://doi.org/10.1016/S0022-2836(61)80004-1.
R.L. Dutta and M.M. Hossain, J. Sci. Ind. Res., 33, 635 (1985).
Y. Shechter, I. Goldwash, M. Micronchik, M. Fridkin and D. Gefel, Coord. Chem. Rev., 237, 3 (2003); https://doi.org/10.1016/S0010-8545(02)00302-8.
D. Rehder, Inorg. Chem. Commun., 6, 604 (2003); https://doi.org/10.1016/S1387-7003(03)00050-9.
K.H. Thompson and C. Orvig, Coord. Chem. Rev., 219-221, 1033 (2001); https://doi.org/10.1016/S0010-8545(01)00395-2.
G. Verquin, G. Fontaine, M. Bria, E. Zhilinskaya, E. Abi-Aad, A. Aboukaïs, B. Baldeyrou, C. Bailly and J.-L. Bernier, J. Biol. Inorg. Chem., 9, 345 (2004); https://doi.org/10.1007/s00775-004-0529-0.
N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Synth. React. Inorg. Met.-Org. Chem., 34, 17 (2004); https://doi.org/10.1081/SIM-120027315.
M.M.E. Shakdofa, M.H. Shtaiwi, N. Morsy and T.M.A. Abdel-rassel, Main Group Chem., 13, 187 (2014); https://doi.org/10.3233/MGC-140133.
A.A. Recio Despaigne, J.G. Da Silva, A.C.M. Do Carmo, O.E. Piro, E.E. Castellano and H. Beraldo, J. Mol. Struct., 920, 97 (2009); https://doi.org/10.1016/j.molstruc.2008.10.025.
Y.J. Jang, U.K. Lee and B.K. Koo, Bull. Korean Chem. Soc., 26, 925 (2005); https://doi.org/10.5012/bkcs.2005.26.6.925.
K. Raja, A. Suseelamma and K.H. Reddy, J. Chem. Sci., 128, 1265 (2016); https://doi.org/10.1007/s12039-016-1125-x.
K. Raja, A. Suseelamma and K.H. Reddy, J. Chem. Sci., 128, 23 (2016); https://doi.org/10.1007/s12039-015-1003-y.
K. Raja, A. Suseelamma and K.H. Reddy, J. Iran. Chem. Soc., 12, 1473 (2015); https://doi.org/10.1007/s13738-015-0624-x.
K.H. Reddy, K. Raja and A. Suseelamma, Inorg. Nano-Metal Chem., 47, 1398 (2017); https://doi.org/10.1080/24701556.2017.1284129.
M. Pragathi and K.H. Reddy, Asian J. Chem., 31, 148 (2019); https://doi.org/10.14233/ajchem.2019.21558.
P. Hari Babu and K.H. Reddy, Indian J. Chem., 52A, 327 (2013).
M. Pragahi and K.H. Reddy, Indian J. Chem., 52A, 845 (2013).
M. Pragathi and K.H. Reddy, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010.
P. Haribabu, Y.P. Patil, K.H. Reddy and M. Nethaji, Transition Met. Chem., 39, 167 (2014); https://doi.org/10.1007/s11243-013-9786-5.
H. Pagonda, P.P. Yogesh, H.R. Katreddi and N. Munirathinam, Inorg. Chim. Acta, 392, 478 (2012); https://doi.org/10.1016/j.ica.2012.03.042.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
N. Raman, A. Kulandaisamy and K. Jayesubramanian, Indian J. Chem., 41A, 942 (2002).
S.M. Mamdoush, S.M. Abou Elenein and H.M. Kamel, Indian J. Chem., 41A, 297 (2002).
R.S. Giordano and R.D. Bereman, J. Am. Chem Soc., 96, 1019 (1974); https://doi.org/10.1021/ja00811a012.
R.V. Prasad and N.V. Thakkar, J. Mol. Catal., 92, 9 (1994); https://doi.org/10.1016/0304-5102(94)00063-8.
S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet and J.-P. Bouchara, J. Inorg. Biochem., 102, 63 (2008); https://doi.org/10.1016/j.jinorgbio.2007.07.001.
N. Dharmaraj, P. Viswanathamurthi and K. Natarajan, Transition Met. Chem., 26, 105 (2001); https://doi.org/10.1023/A:1007132408648.
B.G. Tweedy, Phytopathology, 55, 910 (1964).
M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja and T. Jeyakumar, Indian J. Pharm. Sci., 72, 216 (2010); https://doi.org/10.4103/0250-474X.65015.
Z.H. Chohan, A.K. Misbahul and M. Moazzam, Indian J. Chem., 27A, 1102 (1988).