Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
ab initio Method on the Mechanism of Acetalization of 2-Methoxybenzaldehyde Using Halogen Acid Catalysts
Corresponding Author(s) : Muhammad Yusuf
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
ab initio method used on the mechanism of acetalization of 2-methoxybenzaldehyde. ab initio method is a quantum mechanical approximate calculation and derived directly only from theoretical principles. All geometry optimizations were performed using 3-21G and 6-31G* basis set with Hyperchem 8.0 software (windows version). The aim of this study was to focus on the study of the mechanism of acetalization of 2-methoxybenzaldehyde using hydrochloric acid as catalysts. The computational calculation not only provided possible reaction steps but also provided possible energy change in each step of the reaction mechanism of acetalization of 2-methoxybenzaldehyde. The result showed that 2-methoxybenzaldehyde (0 kJ/mol) has the lowest energy and electronegativity compared to acetal product (-17.43 kJ/mol) and a labile hemiacetal (448.33 kJ/mol) due to its stability and the influence of neighbour atom.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Han, W. Yan, K. Chen, C.-T. Hung, L.-L. Liu, P.-H. Wu, S.-J. Huang and S.-B. Liu, Appl. Catal. A Gen., 485, 149 (2014); https://doi.org/10.1016/j.apcata.2014.08.001.
- M. Cataldo, E. Nieddu, R. Gavagnin, F. Pinna and G. Strukul, J. Mol. Catal. Chem., 142, 305 (1999); https://doi.org/10.1016/S1381-1169(98)00299-4.
- N. Narkhede and A. Patel, RSC Adv., 4, 19294 (2014); https://doi.org/10.1039/c4ra01851f.
- B.M. Smith and A.E. Graham, Tetrahedron Lett., 47, 9317 (2006); https://doi.org/10.1016/j.tetlet.2006.10.111.
- Y. Mei, P.A. Bentley and J. Du, Tetrahedron Lett., 50, 4199 (2009); https://doi.org/10.1016/j.tetlet.2009.01.006.
- S. Zhao, Y. Jia and Y.F. Song, Catal. Sci. Technol., 4, 2618 (2014); https://doi.org/10.1039/C4CY00021H.
- F. Zhang, J. Shi, Y. Jin, Y. Fu, Y. Zhong and W. Zhu, Chem. Eng. J., 259, 183 (2015); https://doi.org/10.1016/j.cej.2014.07.119.
- A. Dhakshinamoorthy, M. Alvaro and H. Garcia, Adv. Synth. Catal., 352, 3022 (2010); https://doi.org/10.1002/adsc.201000537.
- Y. Luan, N. Zheng, Y. Qi, J. Tang and G. Wang, Catal. Sci. Technol., 4, 925 (2014); https://doi.org/10.1039/c3cy00864a.
- Y. Jin, J. Shi, F. Zhang, Y. Zhong and W. Zhu, J. Mol. Catal. Chem., 383–384, 167 (2014); https://doi.org/10.1016/j.molcata.2013.12.005.
- M.N. Timofeeva, V.N. Panchenko, J.W. Jun, Z. Hasan, M.M. Matrosova and S.H. Jhung, Appl. Catal. Gen., 471, 91 (2014); https://doi.org/10.1016/j.apcata.2013.11.039.
- M.J. Climent, A. Velty and A. Corma, Green Chem., 4, 565 (2002); https://doi.org/10.1039/b207506g.
- Y. Wang, D. Jiang and L. Dai, Catal. Commun., 9, 2475 (2008); https://doi.org/10.1016/j.catcom.2008.06.021.
- U.S.F. Arrozi, H.W. Wijaya, A. Patah and Y. Permana, Appl. Catal. A, 506, 77 (2015); https://doi.org/10.1016/j.apcata.2015.08.028.
- T.F. Parangi, B.N. Wani and U.V. Chudasama, Ind. Eng. Chem. Res., 52, 8969 (2013); https://doi.org/10.1021/ie400686d.
- M. Yusuf and D.E. Sitepu, AIP Conf. Proceed., 1803, 020055 (2017); https://doi.org/10.1063/1.4973182.
- M. Yusuf, D. Roza and A.K. Nasution, AIP Conf. Proceed., 1904, 020012 (2017); https://doi.org/10.1063/1.5011869.
- Hypercube Inc., Florida Science and Technology Park, 1115 N.W. 4th Street, Gainesville, FL, 32601 (1997).
References
X. Han, W. Yan, K. Chen, C.-T. Hung, L.-L. Liu, P.-H. Wu, S.-J. Huang and S.-B. Liu, Appl. Catal. A Gen., 485, 149 (2014); https://doi.org/10.1016/j.apcata.2014.08.001.
M. Cataldo, E. Nieddu, R. Gavagnin, F. Pinna and G. Strukul, J. Mol. Catal. Chem., 142, 305 (1999); https://doi.org/10.1016/S1381-1169(98)00299-4.
N. Narkhede and A. Patel, RSC Adv., 4, 19294 (2014); https://doi.org/10.1039/c4ra01851f.
B.M. Smith and A.E. Graham, Tetrahedron Lett., 47, 9317 (2006); https://doi.org/10.1016/j.tetlet.2006.10.111.
Y. Mei, P.A. Bentley and J. Du, Tetrahedron Lett., 50, 4199 (2009); https://doi.org/10.1016/j.tetlet.2009.01.006.
S. Zhao, Y. Jia and Y.F. Song, Catal. Sci. Technol., 4, 2618 (2014); https://doi.org/10.1039/C4CY00021H.
F. Zhang, J. Shi, Y. Jin, Y. Fu, Y. Zhong and W. Zhu, Chem. Eng. J., 259, 183 (2015); https://doi.org/10.1016/j.cej.2014.07.119.
A. Dhakshinamoorthy, M. Alvaro and H. Garcia, Adv. Synth. Catal., 352, 3022 (2010); https://doi.org/10.1002/adsc.201000537.
Y. Luan, N. Zheng, Y. Qi, J. Tang and G. Wang, Catal. Sci. Technol., 4, 925 (2014); https://doi.org/10.1039/c3cy00864a.
Y. Jin, J. Shi, F. Zhang, Y. Zhong and W. Zhu, J. Mol. Catal. Chem., 383–384, 167 (2014); https://doi.org/10.1016/j.molcata.2013.12.005.
M.N. Timofeeva, V.N. Panchenko, J.W. Jun, Z. Hasan, M.M. Matrosova and S.H. Jhung, Appl. Catal. Gen., 471, 91 (2014); https://doi.org/10.1016/j.apcata.2013.11.039.
M.J. Climent, A. Velty and A. Corma, Green Chem., 4, 565 (2002); https://doi.org/10.1039/b207506g.
Y. Wang, D. Jiang and L. Dai, Catal. Commun., 9, 2475 (2008); https://doi.org/10.1016/j.catcom.2008.06.021.
U.S.F. Arrozi, H.W. Wijaya, A. Patah and Y. Permana, Appl. Catal. A, 506, 77 (2015); https://doi.org/10.1016/j.apcata.2015.08.028.
T.F. Parangi, B.N. Wani and U.V. Chudasama, Ind. Eng. Chem. Res., 52, 8969 (2013); https://doi.org/10.1021/ie400686d.
M. Yusuf and D.E. Sitepu, AIP Conf. Proceed., 1803, 020055 (2017); https://doi.org/10.1063/1.4973182.
M. Yusuf, D. Roza and A.K. Nasution, AIP Conf. Proceed., 1904, 020012 (2017); https://doi.org/10.1063/1.5011869.
Hypercube Inc., Florida Science and Technology Park, 1115 N.W. 4th Street, Gainesville, FL, 32601 (1997).