Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Strains Activity of CuO Nanoparticles using Copper Chloride Dihydrate by Sol-Gel Method
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
Copper(II) oxide (CuO) nanoparticles synthesized by different molarities like 0.1, 0.2 and 0.3 M at calcinations temperature 450 ºC. The XRD results analyzed the prominent peaks corresponding to the monocrystalline nature of CuO nanoparticles and the average crystalline size of CuO nanoparticles size is decreased with increase of molarities. From SEM image of CuO nanoparticles, the particles are well scattered, which are well connected and consistent with the crystal system. The absorption spectra shows the blue shift which can be attributed to the small size of CuO nanostructures. The FTIR spectra confirmed high intense broad band peaks at 496.96 cm-1 and assigned to characteristics band of monoclinic phase CuO nanoparticles were synthesized and calcined at 450 ºC, and the particle size of the nanoparticles was found to be in the range of 19-23 nm. These sizes of integrated CuO nanoparticles is a cost-efficient, biological molecule capable of working with antibiotics against Staphylococcus saprophyticus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Eustis and M.A. El-Sayed, Chem. Soc. Rev., 35, 209 (2006); https://doi.org/10.1039/B514191E.
- M. Rakesh, T.N. Divya, T. Vishal and K. Shalini, J. Nanomed. Biotherap. Discov., 5, 131 (2015); https://doi.org/10.4172/2155-983X.1000131.
- A.C.S. Samia, S. Dayal and C. Burda, J. Photochem. Photobiol. Chem., 82, 617 (2006); https://doi.org/10.1562/2005-05-11-IR-525.
- K.S. Kim, W.H. Baek, J.M. Kim, T.S. Yoon, H.H. Lee, C.J. Kang and Y.S. Kim, Sensors, 10, 765 (2010); https://doi.org/10.3390/s100100765.
- J. Singh, G. Kaur and M. Rawat, J. Bioelectron. Nanotechnol., 1, 5 (2016).
- F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, F. Ruiz, H. Bach and Y. Av-Gay, J. Nanomed., 6, 681 (2010); https://doi.org/10.1016/j.nano.2010.02.001.
- M.J. Guajardo-Pacheco, J.E. Morales-Sánchez, J. González-Hernández and F. Ruiz, Mater. Lett., 64, 1361 (2010); https://doi.org/10.1016/j.matlet.2010.03.029.
- A. Kumar, K. Perumal and P. Thirunavukkarasu, J. Optoelectron. Adv. Mater. Rapid Commun., 4, 831 (2010).
- L.G. Carrascosa, M. Moreno, M. Alvarez and L.M. Lechuga, TrAC Trends Anal. Chem., 25, 196 (2006); https://doi.org/10.1016/j.trac.2005.09.006.
- S. Amrut, J. Satish, B. Ramchandara and S. Raghumani, J. Adv. Appl. Sci. Res., 1, 36 (2010).
- K.R. Chandrika, P. Kiranmayi and R.V.S.S.N. Ravikumar, Asian J. Pharm. Clin. Res., 5, 97 (2012).
- L. Qi, Z. Xu, X. Jiang, C. Hu and X. Zou, Carbohydr. Res., 339, 2693 (2004); https://doi.org/10.1016/j.carres.2004.09.007.
- J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008); https://doi.org/10.1016/j.actbio.2007.11.006.
- R. Vijayalakshmi and V. Rajendran, Arch. Appl. Sci. Res., 4, 1183(2012).
- R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016.
- K. Nithya, P. Yuvasree, N. Neelakandeswari, N. Rajasekaran, K. Uthayarani, M. Chitra and S.S. Kumar, Int. J. ChemTech Res., 6, 2220 (2014).
- J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado and M. Sánchez, Electrochim. Acta, 49, 4589 (2004); https://doi.org/10.1016/j.electacta.2004.05.012.
- N.P.S. Acharyulu and R.S. Dubey, Int. J. Eng. Res. Technol., 3, 639 (2014).
- Y. Aparna, K.V. Enkateswara Rao and P.S. Subbarao, Int. Proc. Chem. Biol. Environ. Eng., 48, 156 (2012).
- M. Jothibas, S.J. Jeyakumar, C. Manoharan, I.K. Punithavathy, P. Praveen and J.P. Richard, J. Mater. Sci.: Mater. Electron., 28, 1889 (2017); https://doi.org/10.1007/s10854-016-5740-6.
- R.S. Kumar, S.J. Jeyakumar, M. Jothibas, I.K. Punithavathy and J.P. Richard, J. Mater. Sci.: Mater. Electron., 28, 20 (2017); https://doi.org/10.1007/s10854-017-7456-7.
- K. Phiwdang, S. Suphankij, W. Mekprasart and W. Pecharapa, Energy Procedia, 34, 740 (2012); https://doi.org/10.1016/j.egypro.2013.06.808.
- M. Arakha, J. Roy, P.S. Nayak, B. Mallick and S. Jha, Free Radic. Biol. Med., 110, 42 (2017); https://doi.org/10.1016/j.freeradbiomed.2017.05.015.
- W. Wang, L. Wang, H. Shi and Y. Liang, CrystEngComm, 14, 5914 (2012); https://doi.org/10.1039/c2ce25666e.
- S.M. Sathiya, G.S. Okram and M.A. Jothi Rajan, Adv. Mater. Process., 2, 371 (2017); https://doi.org/10.5185/amp.2017/605.
- S. Ravi, A.B. Kaiser and C.W. Bumby, J. Appl. Phys., 118, 085311 (2015); https://doi.org/10.1063/1.4929644.
- J. Shi, J. Wang, W. Yang, Z. Zhu and Y. Wu, Mater. Res., 19, 316 (2016); https://doi.org/10.1590/1980-5373-MR-2015-0491.
- A.I. El-Batal, H.H. El-Hendawy and A.H.I. Faraag, BioTechnologia, 98, 225 (2017); https://doi.org/10.5114/bta.2017.70801.
- P. Tippayawat, N. Phromviyo, P. Boueroy and A. Chompoosor, PeerJ, 4, e2589 (2016); https://doi.org/10.7717/peerj.2589.
- P. Mallick and S. Sahu, Nanosci. Nanotechnol., 2, 71 (2012); https://doi.org/10.5923/j.nn.20120203.05.
- F. Ijaz, S. Shahid, S.A. Khan, W. Ahmad and S. Zaman, Trop. J. Pharm. Res., 16, 743 (2017); https://doi.org/10.4314/tjpr.v16i4.2.
- J.K. Sharma, P. Srivastava, G. Singh, M.S. Akhtar and S. Ameen, Thermochim. Acta, 614, 110 (2015); https://doi.org/10.1016/j.tca.2015.06.023.
- S. Sumitha, R.P.Vidhya, M.S. Lakshmi and K.S. Prasad, Int. J. Chem. Sci., 14, 435 (2016).
- S. Ahmed, M. Ahmad, B.L. Swami and S. Ikram, J. Adv. Res., 7, 17 (2016); https://doi.org/10.1016/j.jare.2015.02.007.
- A. Haider, S. Kwak, K.C. Gupta and I.-K. Kang, J. Nanomater., 2015, Article ID 832762 (2015); https://doi.org/10.1155/2015/832762.
- P.P.N.V. Kumar, U. Shameem, P. Kollu, R.L. Kalyani and S.V.N. Pammi, Bionanoscience, 5, 135 (2015); https://doi.org/10.1007/s12668-015-0171-z.
- V. Vellora, T.Padil and M. Èerník, Int. J. Nanomed., 8, 889 (2013); https://doi.org/10.2147/IJN.S40599.
- P. Ghorbani, M. Soltani, M. Homayouni-Tabrizi, F. Namvar, S. Azizi, R. Mohammad and A. Moghaddam, Molecules, 20, 12946 (2015); https://doi.org/10.3390/molecules200712946.
- C. Tang, W. Sun and W. Yan, RSC Adv., 4, 523 (2014); https://doi.org/10.1039/C3RA44799E.
- H.M.M. Ibrahim, J. Radiation Res. Appl. Sci., 8, 265 (2015). https://doi.org/10.1016/j.jrras.2015.01.007.
References
S. Eustis and M.A. El-Sayed, Chem. Soc. Rev., 35, 209 (2006); https://doi.org/10.1039/B514191E.
M. Rakesh, T.N. Divya, T. Vishal and K. Shalini, J. Nanomed. Biotherap. Discov., 5, 131 (2015); https://doi.org/10.4172/2155-983X.1000131.
A.C.S. Samia, S. Dayal and C. Burda, J. Photochem. Photobiol. Chem., 82, 617 (2006); https://doi.org/10.1562/2005-05-11-IR-525.
K.S. Kim, W.H. Baek, J.M. Kim, T.S. Yoon, H.H. Lee, C.J. Kang and Y.S. Kim, Sensors, 10, 765 (2010); https://doi.org/10.3390/s100100765.
J. Singh, G. Kaur and M. Rawat, J. Bioelectron. Nanotechnol., 1, 5 (2016).
F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, F. Ruiz, H. Bach and Y. Av-Gay, J. Nanomed., 6, 681 (2010); https://doi.org/10.1016/j.nano.2010.02.001.
M.J. Guajardo-Pacheco, J.E. Morales-Sánchez, J. González-Hernández and F. Ruiz, Mater. Lett., 64, 1361 (2010); https://doi.org/10.1016/j.matlet.2010.03.029.
A. Kumar, K. Perumal and P. Thirunavukkarasu, J. Optoelectron. Adv. Mater. Rapid Commun., 4, 831 (2010).
L.G. Carrascosa, M. Moreno, M. Alvarez and L.M. Lechuga, TrAC Trends Anal. Chem., 25, 196 (2006); https://doi.org/10.1016/j.trac.2005.09.006.
S. Amrut, J. Satish, B. Ramchandara and S. Raghumani, J. Adv. Appl. Sci. Res., 1, 36 (2010).
K.R. Chandrika, P. Kiranmayi and R.V.S.S.N. Ravikumar, Asian J. Pharm. Clin. Res., 5, 97 (2012).
L. Qi, Z. Xu, X. Jiang, C. Hu and X. Zou, Carbohydr. Res., 339, 2693 (2004); https://doi.org/10.1016/j.carres.2004.09.007.
J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008); https://doi.org/10.1016/j.actbio.2007.11.006.
R. Vijayalakshmi and V. Rajendran, Arch. Appl. Sci. Res., 4, 1183(2012).
R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016.
K. Nithya, P. Yuvasree, N. Neelakandeswari, N. Rajasekaran, K. Uthayarani, M. Chitra and S.S. Kumar, Int. J. ChemTech Res., 6, 2220 (2014).
J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado and M. Sánchez, Electrochim. Acta, 49, 4589 (2004); https://doi.org/10.1016/j.electacta.2004.05.012.
N.P.S. Acharyulu and R.S. Dubey, Int. J. Eng. Res. Technol., 3, 639 (2014).
Y. Aparna, K.V. Enkateswara Rao and P.S. Subbarao, Int. Proc. Chem. Biol. Environ. Eng., 48, 156 (2012).
M. Jothibas, S.J. Jeyakumar, C. Manoharan, I.K. Punithavathy, P. Praveen and J.P. Richard, J. Mater. Sci.: Mater. Electron., 28, 1889 (2017); https://doi.org/10.1007/s10854-016-5740-6.
R.S. Kumar, S.J. Jeyakumar, M. Jothibas, I.K. Punithavathy and J.P. Richard, J. Mater. Sci.: Mater. Electron., 28, 20 (2017); https://doi.org/10.1007/s10854-017-7456-7.
K. Phiwdang, S. Suphankij, W. Mekprasart and W. Pecharapa, Energy Procedia, 34, 740 (2012); https://doi.org/10.1016/j.egypro.2013.06.808.
M. Arakha, J. Roy, P.S. Nayak, B. Mallick and S. Jha, Free Radic. Biol. Med., 110, 42 (2017); https://doi.org/10.1016/j.freeradbiomed.2017.05.015.
W. Wang, L. Wang, H. Shi and Y. Liang, CrystEngComm, 14, 5914 (2012); https://doi.org/10.1039/c2ce25666e.
S.M. Sathiya, G.S. Okram and M.A. Jothi Rajan, Adv. Mater. Process., 2, 371 (2017); https://doi.org/10.5185/amp.2017/605.
S. Ravi, A.B. Kaiser and C.W. Bumby, J. Appl. Phys., 118, 085311 (2015); https://doi.org/10.1063/1.4929644.
J. Shi, J. Wang, W. Yang, Z. Zhu and Y. Wu, Mater. Res., 19, 316 (2016); https://doi.org/10.1590/1980-5373-MR-2015-0491.
A.I. El-Batal, H.H. El-Hendawy and A.H.I. Faraag, BioTechnologia, 98, 225 (2017); https://doi.org/10.5114/bta.2017.70801.
P. Tippayawat, N. Phromviyo, P. Boueroy and A. Chompoosor, PeerJ, 4, e2589 (2016); https://doi.org/10.7717/peerj.2589.
P. Mallick and S. Sahu, Nanosci. Nanotechnol., 2, 71 (2012); https://doi.org/10.5923/j.nn.20120203.05.
F. Ijaz, S. Shahid, S.A. Khan, W. Ahmad and S. Zaman, Trop. J. Pharm. Res., 16, 743 (2017); https://doi.org/10.4314/tjpr.v16i4.2.
J.K. Sharma, P. Srivastava, G. Singh, M.S. Akhtar and S. Ameen, Thermochim. Acta, 614, 110 (2015); https://doi.org/10.1016/j.tca.2015.06.023.
S. Sumitha, R.P.Vidhya, M.S. Lakshmi and K.S. Prasad, Int. J. Chem. Sci., 14, 435 (2016).
S. Ahmed, M. Ahmad, B.L. Swami and S. Ikram, J. Adv. Res., 7, 17 (2016); https://doi.org/10.1016/j.jare.2015.02.007.
A. Haider, S. Kwak, K.C. Gupta and I.-K. Kang, J. Nanomater., 2015, Article ID 832762 (2015); https://doi.org/10.1155/2015/832762.
P.P.N.V. Kumar, U. Shameem, P. Kollu, R.L. Kalyani and S.V.N. Pammi, Bionanoscience, 5, 135 (2015); https://doi.org/10.1007/s12668-015-0171-z.
V. Vellora, T.Padil and M. Èerník, Int. J. Nanomed., 8, 889 (2013); https://doi.org/10.2147/IJN.S40599.
P. Ghorbani, M. Soltani, M. Homayouni-Tabrizi, F. Namvar, S. Azizi, R. Mohammad and A. Moghaddam, Molecules, 20, 12946 (2015); https://doi.org/10.3390/molecules200712946.
C. Tang, W. Sun and W. Yan, RSC Adv., 4, 523 (2014); https://doi.org/10.1039/C3RA44799E.
H.M.M. Ibrahim, J. Radiation Res. Appl. Sci., 8, 265 (2015). https://doi.org/10.1016/j.jrras.2015.01.007.