Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Modification of Lampung and Bayah Natural Zeolite to Enhance the Efficiency of Removal of Ammonia from Wastewater
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
In this research, modification of Lampung and Bayah natural zeolites was carried out to increase the zeolite’s capacity as an ammonia adsorbent. Natural zeolite is modified by acid treatment using 6 M HCl and ion exchange using 1 M NH4NO3. The modification process continued with calcination at 500 °C for 4 h. X-ray fluorescence characterization shows changes in composition in the modified zeolites. The significant increase in the Si/Al ratio occurred in the modified zeolite with acid treatment that is 10.03 for Lampung natural zeolite HCl (LNZH) and 9.20 for Bayah natural zeolite HCl (BNZH). Surface area increases due to increasing Si/Al ratio. FTIR results indicate changes in the intensity of hydroxyl groups and pyrH+ as a result of the increase in total acidity of zeolites. The zeolites performance test proves that the Bayah natural zeolite has a higher ammonia adsorption capacity than Lampung natural zeolite. Ion exchange-modified zeolite has a higher ammonia adsorption capacity than zeolite modified with acid treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Jasuja, G.W. Peterson, J.B. Decoste, M.A. Browe and K.S. Walton, Chem. Eng. Sci., 124, 118 (2015); https://doi.org/10.1016/j.ces.2014.08.050.
- Y. Liu, L. Li and R. Goel, J. Hazard. Mater., 167, 959 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.082.
- C.-Y. Zou, S. Liu, Z. Shen, Y. Zhang, N. Jiang and W. Ji, Chin. J. Catal., 38, 20 (2017); https://doi.org/10.1016/S1872-2067(17)62752-9.
- W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer and J. Economy, Micropor. Mesopor. Mater., 234(Suppl.), 146 (2016); https://doi.org/10.1016/j.micromeso.2016.07.011.
- X. Du and E. Wu, J. Phys. Chem. Solids, 68, 1692 (2007); https://doi.org/10.1016/j.jpcs.2007.04.013.
- L. Shirazi, E. Jamshidi and M.R. Ghasemi, Cryst. Res. Technol., 43, 1300 (2008); https://doi.org/10.1002/crat.200800149.
- R. Xue, A. Donovan, H. Zhang, Y. Ma, C. Adams, J. Yang, B. Hua, E. Inniss, T. Eichholz and H. Shi, J. Environ. Sci., 64, 82 (2018); https://doi.org/10.1016/j.jes.2017.02.010.
- G.B. Nuernberg, M.A. Moreira, P.R. Ernani, J.A. Almeida and T.M. Maciel, J. Environ. Manage., 183, 667 (2016); https://doi.org/10.1016/j.jenvman.2016.08.062.
- A. Almutairi and L.R. Weatherley, J. Environ. Manage., 160, 128 (2015); https://doi.org/10.1016/j.jenvman.2015.05.033.
- R.S.P. Couto, A.F. Oliveira, A.W.S. Guarino, D.V. Perez and M.R.C. Marques, Environ. Technol., 38, 816 (2017); https://doi.org/10.1080/09593330.2016.1212935.
- G. Markou, D. Vandamme and K. Muylaert, Bioresour. Technol., 155, 373 (2014); https://doi.org/10.1016/j.biortech.2013.12.122.
- A. Ates and G. Akgül, Powder Technol., 287, 285 (2016); https://doi.org/10.1016/j.powtec.2015.10.021.
- Hernawan, S.K. Wahono, R. Maryana and D. Pratiwi, Energy Procedia, 65, 116 (2015); https://doi.org/10.1016/j.egypro.2015.01.042.
- A. Ates, Powder Technol., 264, 86 (2014); https://doi.org/10.1016/j.powtec.2014.05.023.
- M. Golomeova, A. Zendelska, K. Blazev, B. Krstev and B. Golomeov, Int. J. Eng. Res. Technol., 3, 11 (2014).
- D.H. Lee and H. Moon, Korean J. Chem. Eng., 18, 247 (2001); https://doi.org/10.1007/BF02698467.
- B. Armagan, M. Turan, O. Özdemir and M.S. Çelik, J. Environ. Sci. Health Part A, 39, 1251 (2004); https://doi.org/10.1081/ESE-120030329.
- X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin and J. Wang, Fuel Process. Technol., 157, 99 (2017); https://doi.org/10.1016/j.fuproc.2016.12.006.
- A. Ertan and F. Çakicioglu-Ozkan, Adsorption, 11(S1), 151 (2005); https://doi.org/10.1007/s10450-005-5914-7.
- G. Nasser, T. Kurniawan, K. Miyake, A. Galadima, Y. Hirota, N. Nishiyama and O. Muraza, J. Nat. Gas Sci. Eng., 28, 566 (2016); https://doi.org/10.1016/j.jngse.2015.12.032.
- T. Windarti, Effectiveness Profile of Acidic Zeolite Catalyst in Polyethylene Pyrolysis of Plastics Waste into Olefins Due to Temperature Changes, Routine DIK Research Report, Diponegoro University, Semarang: Indonesia (2002).
- J. Kyziol-Komosiñska, C. Rosik-Dulewska, M. Franus, P. AntoszczyszynSzpicka, J. Czupiol and I. Krzyzewska, Pol. J. Environ. Stud., 24, 1111 (2015); https://doi.org/10.15244/pjoes/30923.
- J. Cejka, A. Corma and S. Zones, Zeolites and Catalysis: Synthesis, Reactions and Applications, John Wiley & Sons (2010).
- M. Sutarti and M. Rachmawati, Zeolite Literature Review, Scientific Information and Documentation Centre, Indonesian Institute of Sciences: Jakarta (1994).
- J. Liu, X. Cheng, Y. Zhang, X. Wang, Q. Zou and L. Fu, Micropor. Mesopor. Mater., 252, 179 (2017); https://doi.org/10.1016/j.micromeso.2017.06.029.
- A. Ates and C. Hardacre, J. Colloid Interface Sci., 372, 130 (2012); https://doi.org/10.1016/j.jcis.2012.01.017.
- Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li and G. Li, Micropor. Mesopor. Mater., 143, 435 (2011); https://doi.org/10.1016/j.micromeso.2011.03.029.
- B.T. Musfiroh, Department of Ilmu Tanah dan Sumberdaya Lahan IPB, Bogor, Indonesia (2016).
- M. Rozic, Š. Cerjan-Stefanovic, S. Kurajica, V. Vanèina and E. Hodzic, Water Res., 34, 3675 (2000); https://doi.org/10.1016/S0043-1354(00)00113-5.
- S. Wang and Y. Peng, Chem. Eng. J., 156, 159 (2010); https://doi.org/10.1016/j.cej.2009.10.029.
References
H. Jasuja, G.W. Peterson, J.B. Decoste, M.A. Browe and K.S. Walton, Chem. Eng. Sci., 124, 118 (2015); https://doi.org/10.1016/j.ces.2014.08.050.
Y. Liu, L. Li and R. Goel, J. Hazard. Mater., 167, 959 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.082.
C.-Y. Zou, S. Liu, Z. Shen, Y. Zhang, N. Jiang and W. Ji, Chin. J. Catal., 38, 20 (2017); https://doi.org/10.1016/S1872-2067(17)62752-9.
W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer and J. Economy, Micropor. Mesopor. Mater., 234(Suppl.), 146 (2016); https://doi.org/10.1016/j.micromeso.2016.07.011.
X. Du and E. Wu, J. Phys. Chem. Solids, 68, 1692 (2007); https://doi.org/10.1016/j.jpcs.2007.04.013.
L. Shirazi, E. Jamshidi and M.R. Ghasemi, Cryst. Res. Technol., 43, 1300 (2008); https://doi.org/10.1002/crat.200800149.
R. Xue, A. Donovan, H. Zhang, Y. Ma, C. Adams, J. Yang, B. Hua, E. Inniss, T. Eichholz and H. Shi, J. Environ. Sci., 64, 82 (2018); https://doi.org/10.1016/j.jes.2017.02.010.
G.B. Nuernberg, M.A. Moreira, P.R. Ernani, J.A. Almeida and T.M. Maciel, J. Environ. Manage., 183, 667 (2016); https://doi.org/10.1016/j.jenvman.2016.08.062.
A. Almutairi and L.R. Weatherley, J. Environ. Manage., 160, 128 (2015); https://doi.org/10.1016/j.jenvman.2015.05.033.
R.S.P. Couto, A.F. Oliveira, A.W.S. Guarino, D.V. Perez and M.R.C. Marques, Environ. Technol., 38, 816 (2017); https://doi.org/10.1080/09593330.2016.1212935.
G. Markou, D. Vandamme and K. Muylaert, Bioresour. Technol., 155, 373 (2014); https://doi.org/10.1016/j.biortech.2013.12.122.
A. Ates and G. Akgül, Powder Technol., 287, 285 (2016); https://doi.org/10.1016/j.powtec.2015.10.021.
Hernawan, S.K. Wahono, R. Maryana and D. Pratiwi, Energy Procedia, 65, 116 (2015); https://doi.org/10.1016/j.egypro.2015.01.042.
A. Ates, Powder Technol., 264, 86 (2014); https://doi.org/10.1016/j.powtec.2014.05.023.
M. Golomeova, A. Zendelska, K. Blazev, B. Krstev and B. Golomeov, Int. J. Eng. Res. Technol., 3, 11 (2014).
D.H. Lee and H. Moon, Korean J. Chem. Eng., 18, 247 (2001); https://doi.org/10.1007/BF02698467.
B. Armagan, M. Turan, O. Özdemir and M.S. Çelik, J. Environ. Sci. Health Part A, 39, 1251 (2004); https://doi.org/10.1081/ESE-120030329.
X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin and J. Wang, Fuel Process. Technol., 157, 99 (2017); https://doi.org/10.1016/j.fuproc.2016.12.006.
A. Ertan and F. Çakicioglu-Ozkan, Adsorption, 11(S1), 151 (2005); https://doi.org/10.1007/s10450-005-5914-7.
G. Nasser, T. Kurniawan, K. Miyake, A. Galadima, Y. Hirota, N. Nishiyama and O. Muraza, J. Nat. Gas Sci. Eng., 28, 566 (2016); https://doi.org/10.1016/j.jngse.2015.12.032.
T. Windarti, Effectiveness Profile of Acidic Zeolite Catalyst in Polyethylene Pyrolysis of Plastics Waste into Olefins Due to Temperature Changes, Routine DIK Research Report, Diponegoro University, Semarang: Indonesia (2002).
J. Kyziol-Komosiñska, C. Rosik-Dulewska, M. Franus, P. AntoszczyszynSzpicka, J. Czupiol and I. Krzyzewska, Pol. J. Environ. Stud., 24, 1111 (2015); https://doi.org/10.15244/pjoes/30923.
J. Cejka, A. Corma and S. Zones, Zeolites and Catalysis: Synthesis, Reactions and Applications, John Wiley & Sons (2010).
M. Sutarti and M. Rachmawati, Zeolite Literature Review, Scientific Information and Documentation Centre, Indonesian Institute of Sciences: Jakarta (1994).
J. Liu, X. Cheng, Y. Zhang, X. Wang, Q. Zou and L. Fu, Micropor. Mesopor. Mater., 252, 179 (2017); https://doi.org/10.1016/j.micromeso.2017.06.029.
A. Ates and C. Hardacre, J. Colloid Interface Sci., 372, 130 (2012); https://doi.org/10.1016/j.jcis.2012.01.017.
Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li and G. Li, Micropor. Mesopor. Mater., 143, 435 (2011); https://doi.org/10.1016/j.micromeso.2011.03.029.
B.T. Musfiroh, Department of Ilmu Tanah dan Sumberdaya Lahan IPB, Bogor, Indonesia (2016).
M. Rozic, Š. Cerjan-Stefanovic, S. Kurajica, V. Vanèina and E. Hodzic, Water Res., 34, 3675 (2000); https://doi.org/10.1016/S0043-1354(00)00113-5.
S. Wang and Y. Peng, Chem. Eng. J., 156, 159 (2010); https://doi.org/10.1016/j.cej.2009.10.029.