Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of TiO2 Concentration on Thermal Stability and Dielectric Properties of (PANI)1-x(TiO2)x Nanocomposites
Corresponding Author(s) : Ajay Kumar Sharma
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
The current paper deals with investigation of (PANI)1-x(TiO2)x nanocomposites to explore possible material for optoelectronic devices. To investigate the effect of TiO2 concentration on structural, surface morphology and chemical properties of PANI, samples were characterized by XRD, FTIR, SEM and Raman spectroscopy. The XRD pattern evidence the presence of a blend of anatase and rutile phase of TiO2 within the PANI matrix which shows amorphous nature of the matrix. FTIR and Raman spectra confirm the formation of PANI/TiO2 nanocomposites. SEM images show the appearance of lumps into smooth PANI samples with addition of TiO2 nanoparticles. The thermal and dielectric properties were studied using TGA and Impedance analyzer, respectively. The results showed that the addition of TiO2 improves the thermal stability, which clearly shows its potential application in optoelectronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Athawale and M.V. Kulkarni, Sens. Actuators B: Chem., 67, 173 (2000); https://doi.org/10.1016/S0925-4005(00)00394-4.
- R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov and K. Varahramyan, Sens. Actuators B: Chem., 114, 218 (2006); https://doi.org/10.1016/j.snb.2005.04.034.
- G.B. Shumaila, V.S. Lakshmi, M. Alam, A.M. Siddiqui, M. Zulfequar and M. Husain, Curr. Appl. Phys., 11, 217 (2010); https://doi.org/10.1016/j.cap.2010.07.010.
- S.M. Reda and S.M. Al-Ghannam, Adv. Mater. Phys. Chem., 2, 75 (2012); https://doi.org/10.4236/ampc.2012.22013.
- K. Gupta, P.C. Jana and A.K. Meikap, Synth. Metals, 160, 1566 (2010); https://doi.org/10.1016/j.synthmet.2010.05.026.
- W.J. Bae, K.H. Kim and W.H. Jo, Macromolecules, 37, 9850 (2004); https://doi.org/10.1021/ma048829b.
- W.M.A.T. Bandara, D.M.M. Krishantha, J.S.H.Q. Perera, R.M.G. Rajapakse and D.T.B. Tennakoon, J. Compos. Mater., 39, 759 (2005); https://doi.org/10.1177/0021998305048155.
- P. Aranda, M. Darder, R. Fernandez-Saavedra, M. Lopez-Blanco and E. Ruiz-Hitzky, Thin Solid Films, 495, 104 (2006); https://doi.org/10.1016/j.tsf.2005.08.284.
- J.H. Sung and H.J. Choi, J. Macromol. Sci. B: Phys., 44, 365 (2005); https://doi.org/10.1081/MB-200057348.
- A. Dey, S. De, A. De and S.K. De, Nanotechnology, 15, 1277 (2004); https://doi.org/10.1088/0957-4484/15/9/028.
- C. Huang and Q.M. Zhang, Adv. Mater., 17, 1153 (2005); https://doi.org/10.1002/adma.200401161.
- J. Gao, J.M. Sansiena and H. L. Wang, Synth. Metals, 135, 809 (2003); https://doi.org/10.1016/S0379-6779(02)00883-4.
- E.W. Paul, A.J. Riccio and M.S. Wrighton, J. Phys. Chem., 89, 1441 (1985); https://doi.org/10.1021/j100254a028.
- Z.-L. Hua, J.-L. Shi , L.-X. Zhang, M.-L. Ruan and J.-N. Yan, Adv. Mater., 14, 830 (2002); https://doi.org/10.1002/1521-4095(20020605)14:11<830::AIDADMA830>3.0.CO;2-W.
- A. Rothschold and Y. Komem, Appl. Phys. Lett., 82, 574 (2003); https://doi.org/10.1063/1.1539556.
- S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969.
- J. Wu, W. Pisula and K. Müllen, Chem. Rev., 107, 718 (2007); https://doi.org/10.1021/cr068010r.
- X. Wang, L. Zhi and K. Mullen, Nano Lett., 8, 323 (2008); https://doi.org/10.1021/nl072838r.
- Asha, S.L. Goyal, S. Kumar and N. Kishor, Indian J. Pure Appl. Phys., 52, 341 (2014); http://nopr.niscair.res.in/handle/123456789/28703.
- A.F. Khan, M. Mehmood, S.K. Durrani, M.L. Ali and N.A. Rahim, Mater. Sci. Semicond. Process., 29, 161 (2015); https://doi.org/10.1016/j.mssp.2014.02.009.
- R. Ganesan and A. Gedanken, Nanotechnology, 19, 435709 (2008); https://doi.org/10.1088/0957-4484/19/43/435709.
- M. Diantoro, M. Z. Masrul and A. Taufiq, IOP Conf. Series: J. Physics Conf. Series, 1011, 012065 (2018); https://doi.org/10.1088/1742-6596/1011/1/012065.
- S. Srivastava, S.S. Sharma, S. Kumar, S. Agrawal, M. Singh and Y.K. Vijay, Int. J. Hydrogen Energy, 34, 8444 (2009); https://doi.org/10.1016/j.ijhydene.2009.08.017.
- S. Srivastava, S.S. Sharma, S. Kumar, S. Agrawal, M. Singh and Y.K. Vijay, Synth. Metals, 160, 529 (2010); https://doi.org/10.1016/j.synthmet.2009.11.022.
- B. Butoi, A. Groza, P. Dinca, A. Balan and V. Barna, Polymers, 9, 732 (2017); https://doi.org/10.3390/polym9120732.
- T.C. Mo, H.W. Wang, S.Y. Chen and Y.C. Yeh, Ceramics Int., 34, 1767 (2008); https://doi.org/10.1016/j.ceramint.2007.06.002.
- S. Deivanayaki, V. Ponnuswamy, S. Ashokan, P. Jayamurugan and R. Mariappan, Mater. Sci. Semicond. Process., 16, 554 (2013); https://doi.org/10.1016/j.mssp.2012.07.004.
- J. Yu, C.Y. Jimmy, W. Ho and Z. Jiang, New J. Chem., 26, 607 (2002); https://doi.org/10.1039/B200964A.
- D.C. Schnitzler, M.S. Meruvia, I.A. Hummelgen and A.J.G. Zarbin, Chem. Mater., 15, 4658 (2003); https://doi.org/10.1021/cm034292p.
- J. Lu, K.S. Moon, B.K. Kim and C.P. Wong, Polymer, 48, 1510 (2007); https://doi.org/10.1016/j.polymer.2007.01.057.
- B.G. Soares, M.E. Leyva, G.M.O. Barra and D. Khastgir, Eur. Polym. J., 42, 676 (2006); https://doi.org/10.1016/j.eurpolymj.2005.08.013.
- X.Z. Yan and T. Goodson, J. Phys. Chem. B, 110, 14667 (2006); https://doi.org/10.1021/jp061522p.
- M. Irfan, A. Shakoor, B. Ali, A. Elahi, Tahira, M.I. Ghouri and A. Ali, Eur. Acad. Res., 2, 10602 (2014).
References
A.A. Athawale and M.V. Kulkarni, Sens. Actuators B: Chem., 67, 173 (2000); https://doi.org/10.1016/S0925-4005(00)00394-4.
R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov and K. Varahramyan, Sens. Actuators B: Chem., 114, 218 (2006); https://doi.org/10.1016/j.snb.2005.04.034.
G.B. Shumaila, V.S. Lakshmi, M. Alam, A.M. Siddiqui, M. Zulfequar and M. Husain, Curr. Appl. Phys., 11, 217 (2010); https://doi.org/10.1016/j.cap.2010.07.010.
S.M. Reda and S.M. Al-Ghannam, Adv. Mater. Phys. Chem., 2, 75 (2012); https://doi.org/10.4236/ampc.2012.22013.
K. Gupta, P.C. Jana and A.K. Meikap, Synth. Metals, 160, 1566 (2010); https://doi.org/10.1016/j.synthmet.2010.05.026.
W.J. Bae, K.H. Kim and W.H. Jo, Macromolecules, 37, 9850 (2004); https://doi.org/10.1021/ma048829b.
W.M.A.T. Bandara, D.M.M. Krishantha, J.S.H.Q. Perera, R.M.G. Rajapakse and D.T.B. Tennakoon, J. Compos. Mater., 39, 759 (2005); https://doi.org/10.1177/0021998305048155.
P. Aranda, M. Darder, R. Fernandez-Saavedra, M. Lopez-Blanco and E. Ruiz-Hitzky, Thin Solid Films, 495, 104 (2006); https://doi.org/10.1016/j.tsf.2005.08.284.
J.H. Sung and H.J. Choi, J. Macromol. Sci. B: Phys., 44, 365 (2005); https://doi.org/10.1081/MB-200057348.
A. Dey, S. De, A. De and S.K. De, Nanotechnology, 15, 1277 (2004); https://doi.org/10.1088/0957-4484/15/9/028.
C. Huang and Q.M. Zhang, Adv. Mater., 17, 1153 (2005); https://doi.org/10.1002/adma.200401161.
J. Gao, J.M. Sansiena and H. L. Wang, Synth. Metals, 135, 809 (2003); https://doi.org/10.1016/S0379-6779(02)00883-4.
E.W. Paul, A.J. Riccio and M.S. Wrighton, J. Phys. Chem., 89, 1441 (1985); https://doi.org/10.1021/j100254a028.
Z.-L. Hua, J.-L. Shi , L.-X. Zhang, M.-L. Ruan and J.-N. Yan, Adv. Mater., 14, 830 (2002); https://doi.org/10.1002/1521-4095(20020605)14:11<830::AIDADMA830>3.0.CO;2-W.
A. Rothschold and Y. Komem, Appl. Phys. Lett., 82, 574 (2003); https://doi.org/10.1063/1.1539556.
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969.
J. Wu, W. Pisula and K. Müllen, Chem. Rev., 107, 718 (2007); https://doi.org/10.1021/cr068010r.
X. Wang, L. Zhi and K. Mullen, Nano Lett., 8, 323 (2008); https://doi.org/10.1021/nl072838r.
Asha, S.L. Goyal, S. Kumar and N. Kishor, Indian J. Pure Appl. Phys., 52, 341 (2014); http://nopr.niscair.res.in/handle/123456789/28703.
A.F. Khan, M. Mehmood, S.K. Durrani, M.L. Ali and N.A. Rahim, Mater. Sci. Semicond. Process., 29, 161 (2015); https://doi.org/10.1016/j.mssp.2014.02.009.
R. Ganesan and A. Gedanken, Nanotechnology, 19, 435709 (2008); https://doi.org/10.1088/0957-4484/19/43/435709.
M. Diantoro, M. Z. Masrul and A. Taufiq, IOP Conf. Series: J. Physics Conf. Series, 1011, 012065 (2018); https://doi.org/10.1088/1742-6596/1011/1/012065.
S. Srivastava, S.S. Sharma, S. Kumar, S. Agrawal, M. Singh and Y.K. Vijay, Int. J. Hydrogen Energy, 34, 8444 (2009); https://doi.org/10.1016/j.ijhydene.2009.08.017.
S. Srivastava, S.S. Sharma, S. Kumar, S. Agrawal, M. Singh and Y.K. Vijay, Synth. Metals, 160, 529 (2010); https://doi.org/10.1016/j.synthmet.2009.11.022.
B. Butoi, A. Groza, P. Dinca, A. Balan and V. Barna, Polymers, 9, 732 (2017); https://doi.org/10.3390/polym9120732.
T.C. Mo, H.W. Wang, S.Y. Chen and Y.C. Yeh, Ceramics Int., 34, 1767 (2008); https://doi.org/10.1016/j.ceramint.2007.06.002.
S. Deivanayaki, V. Ponnuswamy, S. Ashokan, P. Jayamurugan and R. Mariappan, Mater. Sci. Semicond. Process., 16, 554 (2013); https://doi.org/10.1016/j.mssp.2012.07.004.
J. Yu, C.Y. Jimmy, W. Ho and Z. Jiang, New J. Chem., 26, 607 (2002); https://doi.org/10.1039/B200964A.
D.C. Schnitzler, M.S. Meruvia, I.A. Hummelgen and A.J.G. Zarbin, Chem. Mater., 15, 4658 (2003); https://doi.org/10.1021/cm034292p.
J. Lu, K.S. Moon, B.K. Kim and C.P. Wong, Polymer, 48, 1510 (2007); https://doi.org/10.1016/j.polymer.2007.01.057.
B.G. Soares, M.E. Leyva, G.M.O. Barra and D. Khastgir, Eur. Polym. J., 42, 676 (2006); https://doi.org/10.1016/j.eurpolymj.2005.08.013.
X.Z. Yan and T. Goodson, J. Phys. Chem. B, 110, 14667 (2006); https://doi.org/10.1021/jp061522p.
M. Irfan, A. Shakoor, B. Ali, A. Elahi, Tahira, M.I. Ghouri and A. Ali, Eur. Acad. Res., 2, 10602 (2014).