Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis and Morphology of Nano Yttria Mediated by Agaricus bisporus
Corresponding Author(s) : T.K. Vishnuvardhan
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
Nano-yttrium oxide has been synthesized from yttrium nitrate hexahydrate by combustion of Agarics bisporus (mushroom) used as fuel. The precursor yttirium nitrate and fuel in acid medium are combusted in furnace at 400 ºC for 3 h yields yttria nanopowder. Morphology of the reaction products are characterized by SEM and TEM. Synthesized yttria nanoparticle are characterized by UV, FTIR, XRD and EDAX are discussed. The crystallite size obtained nano yttria particles are calculated by Scherer′s equation and compared with Williamson-Hall method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Schubert, R. Dargusch, J. Raitano and S.-W. Chan, Biochem. Biophys. Res. Commun., 342, 86 (2006); https://doi.org/10.1016/j.bbrc.2006.01.129.
- J.A. Nelson and M.J. Wagner, Chem. Mater., 14, 915 (2002); https://doi.org/10.1021/cm010900u.
- R. Srinivasan, R. Yogamalar and A.C. Bose, Mater. Res. Bull., 45, 1165 (2010); https://doi.org/10.1016/j.materresbull.2010.05.020.
- S. Roy, W. Sigmund and F. Aldinger, J. Mater. Sci. Lett., 16, 1148 (1997); https://doi.org/10.1023/A:1018540506123.
- S. Ekambaram and K.C. Patil, J. Mater. Chem., 5, 905 (1995); https://doi.org/10.1039/jm9950500905.
- N. Dasgupta, R. Krishnamoorthy and K.T. Jacob, Int. J. Inorg. Mater., 3, 143 (2001); https://doi.org/10.1016/S1466-6049(00)00108-2.
- J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori and Y. Yajima, J. Eur. Ceram. Soc., 20, 2395 (2000); https://doi.org/10.1016/S0955-2219(00)00116-3.
- R. Chaim, A. Shlayer and C. Estournes, J. Eur. Ceram. Soc., 29, 91 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.05.043.
- J. Mouzon and M. Odén, Powder Technol., 177, 77 (2007); https://doi.org/10.1016/j.powtec.2007.02.045.
- J. Dhanaraj, R. Jagannathan, T.R.N. Kutty and C.-H. Lu, J. Phys. Chem. B, 105, 11098 (2001); https://doi.org/10.1021/jp0119330.
- L. Xu, B. Wei, Z. Zhang, Z. Lü, H. Gao and Y. Zhang, Nanotechnology, 17, 4327 (2006); https://doi.org/10.1088/0957-4484/17/17/008.
- G. Narasimha, B. Praveen, K. Mallikarjuna and B.D. Prasad Raju, Int. J. Nano Dimens., 2, 29 (2011); https://doi.org/10.7508/IJND.2011.01.004.
- S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf and G. Lucovsky, J. Appl. Phys., 91, 4500 (2002); https://doi.org/10.1063/1.1456246.
- T. Mokkelbost, I. Kaus, T. Grande and M.A. Einarsrud, Chem. Mater., 16, 5489 (2004); https://doi.org/10.1021/cm048583p.
- R. Srinivasan, R. Yogamalar and A.C. Bose, Mater. Res. Bull., 45, 1165 (2010); https://doi.org/10.1016/j.materresbull.2010.05.020.
- R.P. Ermakov, V.V. Voronov and P.P. Fedorov, Nanosystems: Phys. Chem. Math., 4, 196 (2013).
- G. Bhavani and S. Ganesan, Acta Phys. Pol. A, 130, 1373 (2016); https://doi.org/10.12693/APhysPolA.130.1373.
- S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang and S.J. Chua, J. Appl. Phys., 98, 013505 (2005); https://doi.org/10.1063/1.1940137.
- J.A. Abdulghani and W.M. Al- Ogedy, Iraqi J. Sci., 56C, 1572 (2015).
References
D. Schubert, R. Dargusch, J. Raitano and S.-W. Chan, Biochem. Biophys. Res. Commun., 342, 86 (2006); https://doi.org/10.1016/j.bbrc.2006.01.129.
J.A. Nelson and M.J. Wagner, Chem. Mater., 14, 915 (2002); https://doi.org/10.1021/cm010900u.
R. Srinivasan, R. Yogamalar and A.C. Bose, Mater. Res. Bull., 45, 1165 (2010); https://doi.org/10.1016/j.materresbull.2010.05.020.
S. Roy, W. Sigmund and F. Aldinger, J. Mater. Sci. Lett., 16, 1148 (1997); https://doi.org/10.1023/A:1018540506123.
S. Ekambaram and K.C. Patil, J. Mater. Chem., 5, 905 (1995); https://doi.org/10.1039/jm9950500905.
N. Dasgupta, R. Krishnamoorthy and K.T. Jacob, Int. J. Inorg. Mater., 3, 143 (2001); https://doi.org/10.1016/S1466-6049(00)00108-2.
J.-G. Li, T. Ikegami, J.-H. Lee, T. Mori and Y. Yajima, J. Eur. Ceram. Soc., 20, 2395 (2000); https://doi.org/10.1016/S0955-2219(00)00116-3.
R. Chaim, A. Shlayer and C. Estournes, J. Eur. Ceram. Soc., 29, 91 (2009); https://doi.org/10.1016/j.jeurceramsoc.2008.05.043.
J. Mouzon and M. Odén, Powder Technol., 177, 77 (2007); https://doi.org/10.1016/j.powtec.2007.02.045.
J. Dhanaraj, R. Jagannathan, T.R.N. Kutty and C.-H. Lu, J. Phys. Chem. B, 105, 11098 (2001); https://doi.org/10.1021/jp0119330.
L. Xu, B. Wei, Z. Zhang, Z. Lü, H. Gao and Y. Zhang, Nanotechnology, 17, 4327 (2006); https://doi.org/10.1088/0957-4484/17/17/008.
G. Narasimha, B. Praveen, K. Mallikarjuna and B.D. Prasad Raju, Int. J. Nano Dimens., 2, 29 (2011); https://doi.org/10.7508/IJND.2011.01.004.
S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf and G. Lucovsky, J. Appl. Phys., 91, 4500 (2002); https://doi.org/10.1063/1.1456246.
T. Mokkelbost, I. Kaus, T. Grande and M.A. Einarsrud, Chem. Mater., 16, 5489 (2004); https://doi.org/10.1021/cm048583p.
R. Srinivasan, R. Yogamalar and A.C. Bose, Mater. Res. Bull., 45, 1165 (2010); https://doi.org/10.1016/j.materresbull.2010.05.020.
R.P. Ermakov, V.V. Voronov and P.P. Fedorov, Nanosystems: Phys. Chem. Math., 4, 196 (2013).
G. Bhavani and S. Ganesan, Acta Phys. Pol. A, 130, 1373 (2016); https://doi.org/10.12693/APhysPolA.130.1373.
S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang and S.J. Chua, J. Appl. Phys., 98, 013505 (2005); https://doi.org/10.1063/1.1940137.
J.A. Abdulghani and W.M. Al- Ogedy, Iraqi J. Sci., 56C, 1572 (2015).