Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Photocatalytic Activities and Reusability of Eu-ZnO-Ag Nanoparticles using Sunlight/LEDs Illuminations
Corresponding Author(s) : M. Manjunathan
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
Photocatalyst (Eu–ZnO–Ag) was synthesized by precipitation-decomposition process. The characterization catalyst by phase and size of catalyst by powder-XRD, morphology of catalyst by FE-SEM and optical properties by UV-visible and emission spectroscopy. The photocatalytic action of Eu–ZnO–Ag was investigated in the photodegradation of methylene blue dye in water under LEDs/solar light. Eu–ZnO–Ag catalyst is indicating the excellent activity than Ag–ZnO, Eu–ZnO commercial ZnO/TiO2 nanoparticles. Co-dopants (Eu/Ag) shift the light absorbance of ZnO toward visible region. Factor affecting of photodegrdation study by dose, dye, solution pH on of methylene blue dye present solar/LEDs. The Eu–ZnO–Ag is established to be reusable photocatalyst. A potential photodegradation of methylene blue mechanism was discussed under illuminations LEDs/solar light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U.I. Gaya and A.H. Abdullah, J. Photochem. Photobiol. Photochem. Rev., 9, 1 (2008); https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
- K. Nakata and A. Fujishima, J. Photochem. Photobiol. Photochem. Rev., 13, 169 (2012); https://doi.org/10.1016/j.jphotochemrev.2012.06.001.
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
- I. Muthuvel and M. Swaminathan, Catal. Commun., 8, 981 (2007); https://doi.org/10.1016/j.catcom.2006.10.015.
- I. Muthuvel, B. Krishnakumar and M. Swaminathan, J. Environ. Sci., 24, 529 (2012); https://doi.org/10.1016/S1001-0742(11)60754-7.
- H. Huang, D.Y.C. Leung, P.C.W. Kwong, J. Xiong and L. Zhang, Catal. Today, 201, 189 (2013); https://doi.org/10.1016/j.cattod.2012.06.022.
- M. Lazar, S. Varghese and S. Nair, Catalysts, 2, 572 (2012); https://doi.org/10.3390/catal2040572.
- M.V. Enoch, R. Rajamohan and M. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 473 (2010); https://doi.org/10.1016/j.saa.2010.06.021.
- S. Singhal, J. Kaur, T. Namgyal and R. Sharma, Physica B, 407, 1223 (2012); https://doi.org/10.1016/j.physb.2012.01.103.
- R. Chauhan, A. Kumar and R.P. Chaudhary, J. Sol-Gel Sci. Technol., 63, 546 (2012); https://doi.org/10.1007/s10971-012-2818-3.
- D. Daniel and I.G.R. Gutz, Electrochem. Commun., 9, 522 (2007); https://doi.org/10.1016/j.elecom.2006.10.014.
- S. Han, Y. Tang, H. Guo, S. Qin and J. Wu, Nanoscale Res. Lett., 11, 273 (2016); https://doi.org/10.1186/s11671-016-1497-3.
- A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour and S.W. Joo, Appl. Catal. A Gen., 488, 160 (2014); https://doi.org/10.1016/j.apcata.2014.09.039.
- A. Phuruangrat, O. Yayapao, T. Thongtem and S. Thongtem, J. Nanomater., 2014, Article ID 367529 (2014); https://doi.org/10.1155/2014/367529.
- S. Anandan, Y. Ikuma and V. Murugesan, Int. J. Photoenergy, 2012, Article ID 921412 (2012); https://doi.org/10.1155/2012/921412.
- R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang and S.H. Kim, Ceram. Int., 41, 7773 (2015); https://doi.org/10.1016/j.ceramint.2015.02.110.
- C. Jayachandraiah, K.S. Kumar, G. Krishnaiah and N.M. Rao, J. Alloys Compd., 623, 248 (2015); https://doi.org/10.1016/j.jallcom.2014.10.067.
- Y.J. Jose, M. Manjunathan and S.J. Selvaraj, J. Nanostruct. Chem., 7, 259 (2017); https://doi.org/10.1007/s40097-017-0236-3.
- N. Rajendiran and M. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 52, 1785 (1996); https://doi.org/10.1016/S0584-8539(96)01704-7.
- N.V. Kaneva, D.T. Dimitrov and C.D. Dushkin, Appl. Surf. Sci., 257, 8113 (2011); https://doi.org/10.1016/j.apsusc.2011.04.119.
- S. Velanganni, S. Pravinraj, P. Immanuel and R. Thiruneelakandan, Physica B, 534, 56 (2018); https://doi.org/10.1016/j.physb.2018.01.027.
- B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan and M. Shanthi, Catal. Sci. Technol., 2, 2319 (2012); https://doi.org/10.1039/c2cy20254a.
- W.-K. Jo and R.J. Tayade, Chin. J. Catal., 35, 1781 (2014); https://doi.org/10.1016/S1872-2067(14)60205-9.
References
U.I. Gaya and A.H. Abdullah, J. Photochem. Photobiol. Photochem. Rev., 9, 1 (2008); https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
K. Nakata and A. Fujishima, J. Photochem. Photobiol. Photochem. Rev., 13, 169 (2012); https://doi.org/10.1016/j.jphotochemrev.2012.06.001.
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
I. Muthuvel and M. Swaminathan, Catal. Commun., 8, 981 (2007); https://doi.org/10.1016/j.catcom.2006.10.015.
I. Muthuvel, B. Krishnakumar and M. Swaminathan, J. Environ. Sci., 24, 529 (2012); https://doi.org/10.1016/S1001-0742(11)60754-7.
H. Huang, D.Y.C. Leung, P.C.W. Kwong, J. Xiong and L. Zhang, Catal. Today, 201, 189 (2013); https://doi.org/10.1016/j.cattod.2012.06.022.
M. Lazar, S. Varghese and S. Nair, Catalysts, 2, 572 (2012); https://doi.org/10.3390/catal2040572.
M.V. Enoch, R. Rajamohan and M. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 473 (2010); https://doi.org/10.1016/j.saa.2010.06.021.
S. Singhal, J. Kaur, T. Namgyal and R. Sharma, Physica B, 407, 1223 (2012); https://doi.org/10.1016/j.physb.2012.01.103.
R. Chauhan, A. Kumar and R.P. Chaudhary, J. Sol-Gel Sci. Technol., 63, 546 (2012); https://doi.org/10.1007/s10971-012-2818-3.
D. Daniel and I.G.R. Gutz, Electrochem. Commun., 9, 522 (2007); https://doi.org/10.1016/j.elecom.2006.10.014.
S. Han, Y. Tang, H. Guo, S. Qin and J. Wu, Nanoscale Res. Lett., 11, 273 (2016); https://doi.org/10.1186/s11671-016-1497-3.
A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour and S.W. Joo, Appl. Catal. A Gen., 488, 160 (2014); https://doi.org/10.1016/j.apcata.2014.09.039.
A. Phuruangrat, O. Yayapao, T. Thongtem and S. Thongtem, J. Nanomater., 2014, Article ID 367529 (2014); https://doi.org/10.1155/2014/367529.
S. Anandan, Y. Ikuma and V. Murugesan, Int. J. Photoenergy, 2012, Article ID 921412 (2012); https://doi.org/10.1155/2012/921412.
R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang and S.H. Kim, Ceram. Int., 41, 7773 (2015); https://doi.org/10.1016/j.ceramint.2015.02.110.
C. Jayachandraiah, K.S. Kumar, G. Krishnaiah and N.M. Rao, J. Alloys Compd., 623, 248 (2015); https://doi.org/10.1016/j.jallcom.2014.10.067.
Y.J. Jose, M. Manjunathan and S.J. Selvaraj, J. Nanostruct. Chem., 7, 259 (2017); https://doi.org/10.1007/s40097-017-0236-3.
N. Rajendiran and M. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 52, 1785 (1996); https://doi.org/10.1016/S0584-8539(96)01704-7.
N.V. Kaneva, D.T. Dimitrov and C.D. Dushkin, Appl. Surf. Sci., 257, 8113 (2011); https://doi.org/10.1016/j.apsusc.2011.04.119.
S. Velanganni, S. Pravinraj, P. Immanuel and R. Thiruneelakandan, Physica B, 534, 56 (2018); https://doi.org/10.1016/j.physb.2018.01.027.
B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan and M. Shanthi, Catal. Sci. Technol., 2, 2319 (2012); https://doi.org/10.1039/c2cy20254a.
W.-K. Jo and R.J. Tayade, Chin. J. Catal., 35, 1781 (2014); https://doi.org/10.1016/S1872-2067(14)60205-9.