Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antarvedisides A-B from Manglicolous Lichen Dirinaria consimilis (Stirton) and their Pharmacological Profile
Corresponding Author(s) : Girija Sastry Vedula
Asian Journal of Chemistry,
Vol. 31 No. 4 (2019): Vol 31 Issue 4
Abstract
The chemical examination of acetone extract of Dirinaria consimilis resulted in isolation of six depsides of which two novel metabolites namely antarvediside A (1) and antarvediside B (2) and four known metabolites i.e. sekikaic acid (3), atranorin (4), divaricatic acid (5) and 2’-O-methyl divaricatic acid (6). From the pharmacological screening of the isolates (1-6), it was found that 1 and 2 exhibited better inhibition of ABTS and superoxide free radicals than that of the standard and compound 4 showed significant inhibition of protein denaturation with IC50 value of 390 mg/mL with respect to indomethacin with 110 mg/mL. From the SRB assay results, the better IC50 values was determined by compound 2 of 10.5, 11.50 and 12.50 μg/mL on HeLa, MCF-7 and FADU cancer cell lines, respectively. Thus, the outcomes revealed that the D. consimilis is a new source to treat free radicals, inflammation and cancer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Valarmathi, G.N. Hariharan, G. Venkataraman and A. Parida, Phytochemistry, 70, 721 (2009); https://doi.org/10.1016/j.phytochem.2009.04.007.
- E.F. Ahmed, W.A. Elkhateeb, H.A.A. Taie, M.E. Rateb and W. Fayad, J. Appl. Pharm. Sci., 7, 098 (2017); https://doi.org/10.7324/JAPS.2017.70113.
- M.W. Samdudin, H. Azahar, A. Abas and Z. Zakaria, J. Environ. Prot., 4, 760 (2013); https://doi.org/10.4236/jep.2013.48088.
- X. Huang, L. Wang, A.K.C. Laserna and S.F.Y. Li, Metallomics, 9, 1610 (2017); https://doi.org/10.1039/C7MT00207F.
- J. Kang, R.Y. Chen and D.Q. Yu, J. Asian Nat. Prod. Res., 7, 729 (2005); https://doi.org/10.1080/1028602042000324943.
- V.B. Tatipamula and G.S. Vedula, J. Biomed. Sci., 4, 3 (2018); https://doi.org/10.3126/jbs.v4i1.20572.
- V.B. Tatipamula and G.S. Vedula, Hygeia. J. Dent. Med., 10, 16 (2018); https://doi.org/10.15254/H.J.D.Med.10.2018.174.
- T.V. Bharadwaj, V.G. Sastry and K.S. Murthy, Studies in Fungi, 3, 302 (2018).
- V.B. Tatipamula, K.N. Killari, V.G. Sastry and A. Ketha, Bangladesh J. Pharmacol., 12, 16 (2017); https://doi.org/10.3329/bjp.v12i2.31764.
- S.J. Hwang, W.B. Yoon, O.H. Lee, S.J. Cha and J.D. Kim, Food Chem., 146, 71 (2014); https://doi.org/10.1016/j.foodchem.2013.09.035.
- A. Yashin, Y. Yashin, X. Xia and B. Nemzer, Antioxidants, 6, E70 (2017); https://doi.org/10.3390/antiox6030070.
References
R. Valarmathi, G.N. Hariharan, G. Venkataraman and A. Parida, Phytochemistry, 70, 721 (2009); https://doi.org/10.1016/j.phytochem.2009.04.007.
E.F. Ahmed, W.A. Elkhateeb, H.A.A. Taie, M.E. Rateb and W. Fayad, J. Appl. Pharm. Sci., 7, 098 (2017); https://doi.org/10.7324/JAPS.2017.70113.
M.W. Samdudin, H. Azahar, A. Abas and Z. Zakaria, J. Environ. Prot., 4, 760 (2013); https://doi.org/10.4236/jep.2013.48088.
X. Huang, L. Wang, A.K.C. Laserna and S.F.Y. Li, Metallomics, 9, 1610 (2017); https://doi.org/10.1039/C7MT00207F.
J. Kang, R.Y. Chen and D.Q. Yu, J. Asian Nat. Prod. Res., 7, 729 (2005); https://doi.org/10.1080/1028602042000324943.
V.B. Tatipamula and G.S. Vedula, J. Biomed. Sci., 4, 3 (2018); https://doi.org/10.3126/jbs.v4i1.20572.
V.B. Tatipamula and G.S. Vedula, Hygeia. J. Dent. Med., 10, 16 (2018); https://doi.org/10.15254/H.J.D.Med.10.2018.174.
T.V. Bharadwaj, V.G. Sastry and K.S. Murthy, Studies in Fungi, 3, 302 (2018).
V.B. Tatipamula, K.N. Killari, V.G. Sastry and A. Ketha, Bangladesh J. Pharmacol., 12, 16 (2017); https://doi.org/10.3329/bjp.v12i2.31764.
S.J. Hwang, W.B. Yoon, O.H. Lee, S.J. Cha and J.D. Kim, Food Chem., 146, 71 (2014); https://doi.org/10.1016/j.foodchem.2013.09.035.
A. Yashin, Y. Yashin, X. Xia and B. Nemzer, Antioxidants, 6, E70 (2017); https://doi.org/10.3390/antiox6030070.