Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Intermolecular Interactions between 2-Chloroaniline Isomeric Butanol Complexes in Gas Phase by Using DFT, NBO, QTAIM and RDG Analysis
Corresponding Author(s) : M.Chandra Sekhar
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Density functional theoretical (DFT) studies on intermolecular hydrogen bond interactions between self and cross-associated molecular complexes of 2-chloroaniline and isomeric butanols (e.g., 2-methyl-2-propanol, 2-methyl-1-propanol, 2-butanol and1-butanol) have been analyzed in gas phase. Thirteen 2-chloroaniline isomeric butanol complexes are analyzed at B3LYP/6-311++G(d,p) level regarding their geometries, bond characteristics and interaction energies. The second-order perturbation stabilization energy has been calculated by natural bond orbitals analysis. Barder's quantum theory of atoms in molecules are employed to elucidate electron density (ρ) as well as its Laplacian (∇2ρ) of the complexes. Further to evaluate the strong and weak interactions between the selected molecular complexes non-covalent interactions plots we used the reduced gradient method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, W. Liu, H. Li, Y. Yang and S. Cheng, J. Mol. Struct. THEOCHEM, 778, 49 (2006); https://doi.org/10.1016/j.theochem.2006.07.023.
- Z. Huang, L. Yu, Y. Dai and H. Wang, Struct. Chem., 22, 57 (2011); https://doi.org/10.1007/s11224-010-9689-4.
- V. Umadevi, L. Senthilkumar and P. Kolandaivel, Mol. Simul., 39, 908 (2013); https://doi.org/10.1080/08927022.2013.777840.
- A.M. Priya, L. Senthilkumar and P. Kolandaivel, Struct. Chem., 25, 139 (2014); https://doi.org/10.1007/s11224-013-0260-y
- S. Ranjbar, A. Soltanabadi and Z. Fakhri, J. Chem. Eng. Data, 61, 3077 (2016); https://doi.org/10.1021/acs.jced.6b00158.
- M.C. Sekhar, A. Venkatesulu, T. Mohan and M. Gowrisankar, Orient. J. Chem., 31, 897 (2015); https://doi.org/10.13005/ojc/310233.
- K. Muller-Dethlefs and P. Hobza, Chem. Rev., 100, 143 (2000); https://doi.org/10.1021/cr9900331.
- J.M. Lehn, Chem. Int. Ed. Engl, 29, 1304 (1990); https://doi.org/10.1002/anie.199013041.
- P. Hobza and J. Sponer, J. Chem. Rev, 99, 3247 (1999); https://doi.org/10.1021/cr9800255.
- S. Aloisio and J.S. Francisco, Acc. Chem. Res., 33, 825 (2000); https://doi.org/10.1021/ar000097u.
- M.C. Sekhar, T.M. Mohan and T.V. Krishna, J. Mol. Liq., 200, 263 (2014); https://doi.org/10.1016/j.molliq.2014.10.031.
- T. Lu, Multiwfn Program, Version 2.3; http://multiwfn.codeplex.com.
- M. Karthika, L. Senthilkumar and R. Kanakaraju, Struct. Chem., 25, 197 (2014); https://doi.org/10.1007/s11224-013-0239-8.
- A.J.L. Jesus, M.T.S. Rosado, I. Reva, R. Fausto, M.E.S. Eusébio and J.S. Redinha, J. Phys. Chem. A, 112, 4669 (2008); https://doi.org/10.1021/jp7116196.
- R.F. Bader and H. Essén, J. Chem. Phys., 80, 1943 (1984); https://doi.org/10.1063/1.446956.
- A. Bondi, J. Phys. Chem., 68, 441 (1964); https://doi.org/10.1021/j100785a001.
- M.C. Sekhar, A. Venkatesulu, M. Gowrisankar and T.S. Krishna, Phys. Chem. Liq., 55, 196 (2017); https://doi.org/10.1080/00319104.2016.1183201.
- U. Koch and P.L.A. Popelier, Phys. Chem, 99, 9747 (1995); https://doi.org/10.1021/j100024a016.
- P. Politzer, J.S. Murray and T. Clark, Phys. Chem. Chem. Phys., 12, 7748 (2010); https://doi.org/10.1039/c004189k.
- S.J. Grabowski, W.A. Sokalski and J. Leszczynski, J. Phys. Chem. A, 108, 5823 (2004); https://doi.org/10.1021/jp049874o.
- D. Cremer and E. Kraka, Chem. Int. Engl. Ed., 23, 627 (1984); https://doi.org/10.1002/anie.198406271.
- E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010); https://doi.org/10.1021/ja100936w.
References
Y. Liu, W. Liu, H. Li, Y. Yang and S. Cheng, J. Mol. Struct. THEOCHEM, 778, 49 (2006); https://doi.org/10.1016/j.theochem.2006.07.023.
Z. Huang, L. Yu, Y. Dai and H. Wang, Struct. Chem., 22, 57 (2011); https://doi.org/10.1007/s11224-010-9689-4.
V. Umadevi, L. Senthilkumar and P. Kolandaivel, Mol. Simul., 39, 908 (2013); https://doi.org/10.1080/08927022.2013.777840.
A.M. Priya, L. Senthilkumar and P. Kolandaivel, Struct. Chem., 25, 139 (2014); https://doi.org/10.1007/s11224-013-0260-y
S. Ranjbar, A. Soltanabadi and Z. Fakhri, J. Chem. Eng. Data, 61, 3077 (2016); https://doi.org/10.1021/acs.jced.6b00158.
M.C. Sekhar, A. Venkatesulu, T. Mohan and M. Gowrisankar, Orient. J. Chem., 31, 897 (2015); https://doi.org/10.13005/ojc/310233.
K. Muller-Dethlefs and P. Hobza, Chem. Rev., 100, 143 (2000); https://doi.org/10.1021/cr9900331.
J.M. Lehn, Chem. Int. Ed. Engl, 29, 1304 (1990); https://doi.org/10.1002/anie.199013041.
P. Hobza and J. Sponer, J. Chem. Rev, 99, 3247 (1999); https://doi.org/10.1021/cr9800255.
S. Aloisio and J.S. Francisco, Acc. Chem. Res., 33, 825 (2000); https://doi.org/10.1021/ar000097u.
M.C. Sekhar, T.M. Mohan and T.V. Krishna, J. Mol. Liq., 200, 263 (2014); https://doi.org/10.1016/j.molliq.2014.10.031.
T. Lu, Multiwfn Program, Version 2.3; http://multiwfn.codeplex.com.
M. Karthika, L. Senthilkumar and R. Kanakaraju, Struct. Chem., 25, 197 (2014); https://doi.org/10.1007/s11224-013-0239-8.
A.J.L. Jesus, M.T.S. Rosado, I. Reva, R. Fausto, M.E.S. Eusébio and J.S. Redinha, J. Phys. Chem. A, 112, 4669 (2008); https://doi.org/10.1021/jp7116196.
R.F. Bader and H. Essén, J. Chem. Phys., 80, 1943 (1984); https://doi.org/10.1063/1.446956.
A. Bondi, J. Phys. Chem., 68, 441 (1964); https://doi.org/10.1021/j100785a001.
M.C. Sekhar, A. Venkatesulu, M. Gowrisankar and T.S. Krishna, Phys. Chem. Liq., 55, 196 (2017); https://doi.org/10.1080/00319104.2016.1183201.
U. Koch and P.L.A. Popelier, Phys. Chem, 99, 9747 (1995); https://doi.org/10.1021/j100024a016.
P. Politzer, J.S. Murray and T. Clark, Phys. Chem. Chem. Phys., 12, 7748 (2010); https://doi.org/10.1039/c004189k.
S.J. Grabowski, W.A. Sokalski and J. Leszczynski, J. Phys. Chem. A, 108, 5823 (2004); https://doi.org/10.1021/jp049874o.
D. Cremer and E. Kraka, Chem. Int. Engl. Ed., 23, 627 (1984); https://doi.org/10.1002/anie.198406271.
E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010); https://doi.org/10.1021/ja100936w.