Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectral and Thermal Studies of Some Nucleic Acid Complexes
Corresponding Author(s) : Magda F. Fathalla
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Barbituric acid, thiobarbituric acid and thiouracil complexes with sodium and potassium chlorides were prepared and characterized by UV in different solvents and IR experimentally and theoretically using B3LYP method and Gaussian program. The composition of the studied complexes was also confirmed by elemental and thermal analysis, TG, DTA and DSC techniques to determine thermodynamic parameters (Ea, ΔH, ΔS and ΔG). The negative value of entropy of activation indicated the fragments have ordered structures than undecomposed complexes. The positive values of enthalpy of activation of the decomposition stages indicated that the process is endothermic. The positive values of free energy of the decomposition indicated non-spontaneous process. Evaluation of kinetics parameters were done. The isokinetic temperature β is 407 K, which is lower than experimental temperature range, confirming the processes is entropy control. However, the plots of ΔH versus ΔS for the complexes under investigation gave straight line indicating a close similarity in the mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.Z. Shaban, M.S. Masoud, M.A. Mawlawi, D. Awad and O.M. Sadek, J. Physiol. Biochem., 68, 475 (2012); https://doi.org/10.1007/s13105-012-0160-4.
- R.Y. Levina and F.K. Velichko, USP Khim. Russ. Chem. Rev., 29, 929 (1960).
- M. Holtkamp and H. Meierkord, Cell. Mol. Life Sci., 64, 2023 (2007); https://doi.org/10.1007/s00018-007-7021-2.
- M. Kidwai, R. Thakur and R. Mohan, Acta Chim. Slov., 52, 88 (2005).
- D.R. Janero, Free Radic. Biol. Med., 9, 515 (1990); https://doi.org/10.1016/0891-5849(90)90131-2.
- P.Y. Shirodkar and M.M. Vartak, Indian J. Heterocycl. Chem., 9, 239 (2000).
- W.G. Brouwer, E.E. Felauerand and A.R. Bell, U.S. Patent, 779982 (1990); Chem Abstr., 114, 185539 (1991).
- B.B. Semenov, I.I. Levina and K.A. Krasnov, Pharm. Chem. J., 39, 29 (2005); https://doi.org/10.1007/s11094-005-0073-4.
- Archana, V.K. Srivastava and A. Kumar, Bioorg. Med. Chem., 12, 1257 (2004); https://doi.org/10.1016/j.bmc.2003.08.035.
- A. Nagasaka and H. Hidaka, J. Clin. Endocr. Metab., 43, 152 (1976); https://doi.org/10.1210/jcem-43-1-152.
- S. Shigeta, S. Mori, T. Kira, K. Takahashi, E. Kodama, K. Konno, T. Nagata, H. Kato, T. Wakayama, N. Koike and M. Saneyoshi, Antivir. Chem. Chemother., 10, 195 (1999); https://doi.org/10.1177/095632029901000404.
- M. Bretner, T. Kulikowski, J.M. Dzik, M. Balinska, W. Rode and D. Shugar, J. Med. Chem., 36, 3611 (1993); https://doi.org/10.1021/jm00075a016.
- T. Wandlowski and M.H. Holzle, Langmuir, 12, 6604 (1996); https://doi.org/10.1021/la9607619.
- W. Li, W. Haiss, S. Floate and R.J. Nichols, Langmuir, 15, 4875 (1999); https://doi.org/10.1021/la9815594.
- X. Zhai and S. Efrima, Phys. Chem., 100, 1779 (1996); https://doi.org/10.1021/jp951901a.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li. J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick. A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- aham, A. Nanayakkara, C.Y. Peng, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc.: Wallingford CT (2004).
- J.M. Parmar and N.K. Joshi, Int. J. Chemtech Res., 4, 834 (2012).
- M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali and E.F. Mohamed, Spectrochim. Acta A, 60, 2807 (2004); https://doi.org/10.1016/j.saa.2004.01.019.
- M.S. Masoud, S.A. Abou El-Enein and N.A. Obeid, Z. Phys. Chem., 215, 867 (2001).
- J. Lorentzon, M.P. Fuelscher and B.O. Roos, J. Am. Chem. Soc., 117, 9265 (1995); https://doi.org/10.1021/ja00141a019.
- M.S. Masoud and E.A. Khalil, Pol. J. Chem., 65, 933 (1991).
- M.S. Masoud, A.K. Ghonaim and A.A. Mahmoud, 36th Annual Eastern. Analytical Symposium and Exposition, Somerset: New Jersey, USA, p. 525 (1997).
- G. Miessler and D.A. Tarr, Inorganic Chemistry, Pearson Education Inc.: New Jersey (2004).
- M.S. Masoud, A.A. Abdullah and F.N. Khairy, The Indian Textile J., 103 (1983).
- M.S. Masoud, M.A. El-Dessouky, F. Aly and S.A. Abu El-Enein, 2nd Chemistry Conference of Science, Alexendira University, 178, 196 (1988).
- M.A. Shaker and M.A. Khalifa, Alex. J. Pharm. Sci., 9, 159 (1995).
- M.S. Masoud, A.E. Ali, M.A. Shaker and M.A. Ghani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 3155 (2004); https://doi.org/10.1016/j.saa.2004.02.030.
- J.G. David and H.E. Hallam, Spectrochim. Acta A Mol. Spectrosc., 23, 593 (1967); https://doi.org/10.1016/0584-8539(67)80316-7.
- M.S. Masoud, J. Chem. Pharm. Res., 9, 171 (2017).
- R.W. Taft and M.J. Kamlet, J. Am. Chem. Soc., 98, 2886 (1976); https://doi.org/10.1021/ja00426a036.
- M.S. Masoud, S.S. Haggag, H.M. El-Nahas and N.A. El-Hi, Acta Chim. Hung., 130, 783 (1993).
- C. Rerchordt and T. Wetton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH: Weinheim, edn 2 (2010).
- M.S. Masoud, A. El-Merghany, A.M. Ramadan and M.Y. Abd El-Kaway, J. Therm. Anal. Calorim., 101, 839 (2010); https://doi.org/10.1007/s10973-010-0722-z.
- M.S. Masoud, D.A. Ghareeb and S.S. Ahmed, J. Mol. Struct., 1137, 634 (2017); https://doi.org/10.1016/j.molstruc.2017.01.086.
- H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963); https://doi.org/10.1021/ac60203a013.
- H.L. Kissinger, Anal. Chem., 29, 1702 (1957); https://doi.org/10.1021/ac60131a045.
- C. Degueldre, P. Tissot, H. Lartigue and M. Pouchon, Thermochim. Acta, 403, 267 (2003); https://doi.org/10.1016/S0040-6031(03)00060-1.
- A.R. Reddy and K.H. Reddy, J. Appl. Polym. Sci., 92, 1501 (2004); https://doi.org/10.1002/app.20076.
- M.A. Ashok and B.N. Achar, Bull. Mater. Sci., 31, 29 (2008); https://doi.org/10.1007/s12034-008-0006-4.
- S. Gopalakrishnan and R. Sujatha, Der Chemica Sinica, 2, 103 (2011).
References
N.Z. Shaban, M.S. Masoud, M.A. Mawlawi, D. Awad and O.M. Sadek, J. Physiol. Biochem., 68, 475 (2012); https://doi.org/10.1007/s13105-012-0160-4.
R.Y. Levina and F.K. Velichko, USP Khim. Russ. Chem. Rev., 29, 929 (1960).
M. Holtkamp and H. Meierkord, Cell. Mol. Life Sci., 64, 2023 (2007); https://doi.org/10.1007/s00018-007-7021-2.
M. Kidwai, R. Thakur and R. Mohan, Acta Chim. Slov., 52, 88 (2005).
D.R. Janero, Free Radic. Biol. Med., 9, 515 (1990); https://doi.org/10.1016/0891-5849(90)90131-2.
P.Y. Shirodkar and M.M. Vartak, Indian J. Heterocycl. Chem., 9, 239 (2000).
W.G. Brouwer, E.E. Felauerand and A.R. Bell, U.S. Patent, 779982 (1990); Chem Abstr., 114, 185539 (1991).
B.B. Semenov, I.I. Levina and K.A. Krasnov, Pharm. Chem. J., 39, 29 (2005); https://doi.org/10.1007/s11094-005-0073-4.
Archana, V.K. Srivastava and A. Kumar, Bioorg. Med. Chem., 12, 1257 (2004); https://doi.org/10.1016/j.bmc.2003.08.035.
A. Nagasaka and H. Hidaka, J. Clin. Endocr. Metab., 43, 152 (1976); https://doi.org/10.1210/jcem-43-1-152.
S. Shigeta, S. Mori, T. Kira, K. Takahashi, E. Kodama, K. Konno, T. Nagata, H. Kato, T. Wakayama, N. Koike and M. Saneyoshi, Antivir. Chem. Chemother., 10, 195 (1999); https://doi.org/10.1177/095632029901000404.
M. Bretner, T. Kulikowski, J.M. Dzik, M. Balinska, W. Rode and D. Shugar, J. Med. Chem., 36, 3611 (1993); https://doi.org/10.1021/jm00075a016.
T. Wandlowski and M.H. Holzle, Langmuir, 12, 6604 (1996); https://doi.org/10.1021/la9607619.
W. Li, W. Haiss, S. Floate and R.J. Nichols, Langmuir, 15, 4875 (1999); https://doi.org/10.1021/la9815594.
X. Zhai and S. Efrima, Phys. Chem., 100, 1779 (1996); https://doi.org/10.1021/jp951901a.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li. J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick. A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- aham, A. Nanayakkara, C.Y. Peng, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc.: Wallingford CT (2004).
J.M. Parmar and N.K. Joshi, Int. J. Chemtech Res., 4, 834 (2012).
M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali and E.F. Mohamed, Spectrochim. Acta A, 60, 2807 (2004); https://doi.org/10.1016/j.saa.2004.01.019.
M.S. Masoud, S.A. Abou El-Enein and N.A. Obeid, Z. Phys. Chem., 215, 867 (2001).
J. Lorentzon, M.P. Fuelscher and B.O. Roos, J. Am. Chem. Soc., 117, 9265 (1995); https://doi.org/10.1021/ja00141a019.
M.S. Masoud and E.A. Khalil, Pol. J. Chem., 65, 933 (1991).
M.S. Masoud, A.K. Ghonaim and A.A. Mahmoud, 36th Annual Eastern. Analytical Symposium and Exposition, Somerset: New Jersey, USA, p. 525 (1997).
G. Miessler and D.A. Tarr, Inorganic Chemistry, Pearson Education Inc.: New Jersey (2004).
M.S. Masoud, A.A. Abdullah and F.N. Khairy, The Indian Textile J., 103 (1983).
M.S. Masoud, M.A. El-Dessouky, F. Aly and S.A. Abu El-Enein, 2nd Chemistry Conference of Science, Alexendira University, 178, 196 (1988).
M.A. Shaker and M.A. Khalifa, Alex. J. Pharm. Sci., 9, 159 (1995).
M.S. Masoud, A.E. Ali, M.A. Shaker and M.A. Ghani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 3155 (2004); https://doi.org/10.1016/j.saa.2004.02.030.
J.G. David and H.E. Hallam, Spectrochim. Acta A Mol. Spectrosc., 23, 593 (1967); https://doi.org/10.1016/0584-8539(67)80316-7.
M.S. Masoud, J. Chem. Pharm. Res., 9, 171 (2017).
R.W. Taft and M.J. Kamlet, J. Am. Chem. Soc., 98, 2886 (1976); https://doi.org/10.1021/ja00426a036.
M.S. Masoud, S.S. Haggag, H.M. El-Nahas and N.A. El-Hi, Acta Chim. Hung., 130, 783 (1993).
C. Rerchordt and T. Wetton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH: Weinheim, edn 2 (2010).
M.S. Masoud, A. El-Merghany, A.M. Ramadan and M.Y. Abd El-Kaway, J. Therm. Anal. Calorim., 101, 839 (2010); https://doi.org/10.1007/s10973-010-0722-z.
M.S. Masoud, D.A. Ghareeb and S.S. Ahmed, J. Mol. Struct., 1137, 634 (2017); https://doi.org/10.1016/j.molstruc.2017.01.086.
H.H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963); https://doi.org/10.1021/ac60203a013.
H.L. Kissinger, Anal. Chem., 29, 1702 (1957); https://doi.org/10.1021/ac60131a045.
C. Degueldre, P. Tissot, H. Lartigue and M. Pouchon, Thermochim. Acta, 403, 267 (2003); https://doi.org/10.1016/S0040-6031(03)00060-1.
A.R. Reddy and K.H. Reddy, J. Appl. Polym. Sci., 92, 1501 (2004); https://doi.org/10.1002/app.20076.
M.A. Ashok and B.N. Achar, Bull. Mater. Sci., 31, 29 (2008); https://doi.org/10.1007/s12034-008-0006-4.
S. Gopalakrishnan and R. Sujatha, Der Chemica Sinica, 2, 103 (2011).