Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Crystal Structure, Hirshfeld Surface, Energy Framework and Molecular Docking Analysis of Two Novel Carbazole Derivatives
Corresponding Author(s) : S. Aravindhan
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Carbazole derivatives are important compounds from medicinal point of view because of their widespread biological significance. In the present work two compounds 7-(4-chlorophenyl)-5-methyl-12-(phenylsulfonyl)-12H-naphtho[1,2-b]carbazole (I) and 7-ethyl-5-methyl-12-(phenylsulfonyl)-12H-naphtho[1,2-b]carbazole (II) have been synthesized and characterized by XRD, Hirshfeld surface, energy framework and docking analysis. Single crystal X-ray diffraction analysis shows that the compound I crystallizes in monoclinic system with space group P21/n whereas compound II crystallizes in triclinic with space group P-1. In both compounds there are two intramolecular C-H···O hydrogen bonds, which generates two S (6) ring motifs. The crystal packing is stabilized through weak C-H···O and C-H···Cl interactions. The molecules also features C-H···π interactions. The intermolecular interactions of both compounds were analyzed using Hirshfeld surface analysis and two dimensional fingerprint plots, which was confirmed by the XRD data. Energy frameworks were used to calculate the intermolecular interaction energies and their distribution over the crystal structure. Molecular docking studies show that the compounds exhibits antitumor activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhang, Y. Tao, C. Yang, H. You, Y. Zou, J. Qin and D. Ma, Chem. Mater., 20, 7324 (2008); https://doi.org/10.1021/cm802240q.
- P. Rani, V.K. Srivastava and A. Kumar, Eur. J. Med. Chem., 39, 449 (2004); https://doi.org/10.1016/j.ejmech.2003.11.002.
- H. Panwar, R.S. Verma, V.K. Srivastava and A. Kumar, Indian J. Chem., 45B, 2099 (2006).
- E. Abele, R. Abele, O. Dzenitis and E. Lukevics, Chem. Heterocycl. Compd., 39, 3 (2003); https://doi.org/10.1023/A:1023008422464.
- M. Itoigawa, Y. Kashiwada, C. Ito, H. Furukawa, Y. Tachibana, K.F. Bastow and K.H. Lee, J. Nat. Prod., 63, 893 (2000); https://doi.org/10.1021/np000020e.
- R.S. Ramsewak, M.G. Nair, G.M. Strasburg, D.L. DeWitt and J.L. Nitiss, J. Agric. Food Chem., 47, 444 (1999); https://doi.org/10.1021/jf9805808.
- Y. Tachibana, H. Kikuzaki, N.H. Lajis and N. Nakatani, J. Agric. Food Chem., 49, 5589 (2001); https://doi.org/10.1021/jf010621r.
- W. Gu, C. Qiao, S.F. Wang, Y. Hao and T.T. Miao, Bioorg. Med. Chem. Lett., 24, 328 (2014); https://doi.org/10.1016/j.bmcl.2013.11.009.
- S. Thiratmatrakul, C. Yenjai, P. Waiwut, O. Vajragupta, P. Reubroycharoen, M. Tohda and C. Boonyarat, Eur. J. Med. Chem., 75, 21 (2014); https://doi.org/10.1016/j.ejmech.2014.01.020.
- F. Giraud, M. Bourhis, L. Nauton, V. Théry, L. Herfindal, S.O. Døskeland, F. Anizon and P. Moreau, Bioorg. Chem., 57, 108 (2014); https://doi.org/10.1016/j.bioorg.2014.09.004.
- C. Asche and M. Demeunynck, Anticancer Agents Med. Chem., 7, 247 (2007); https://doi.org/10.2174/187152007780058678.
- H.J. Knölker and K.R. Reddy, Chem. Rev., 102, 4303 (2002); https://doi.org/10.1021/cr020059j.
- S. Ye, Y. Liu, J. Chen, K. Lu, W. Wu, C. Du, Y. Liu, T. Wu, Z. Shuai and G. Yu, Adv. Mater., 22, 4167 (2010); https://doi.org/10.1002/adma.201001392.
- R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund and W.R. Salaneck, Nature, 397, 121 (1999); https://doi.org/10.1038/16393.
- K. Brunner, A. van Dijken, H. Börner, J.J. Bastiaansen, N.M. Kiggen and B.M. Langeveld, J. Am. Chem. Soc., 126, 6035 (2004); https://doi.org/10.1021/ja049883a.
- S.J. Su, H. Sasabe, T. Takeda and J. Kido, Chem. Mater., 20, 1691 (2008); https://doi.org/10.1021/cm703682q.
- S.C. Bang, Y. Kim, M.Y. Yun and B.Z. Ahn, Arch. Pharm. Res., 27, 485 (2004); https://doi.org/10.1007/BF02980120.
- M.A.J.A. Khan and S.S. Shafi, Asian J. Chem., 15, 1443 (2003).
- T. Vandana and K.R. Prasad, Asian J. Chem., 15, 1630 (2003).
- A. Bourderioux, P. Kassis, J.Y. Mérour and S. Routier, Tetrahedron, 64, 11012 (2008); https://doi.org/10.1016/j.tet.2008.09.101.
- S. Fathalipour, N. Shahrokhnia, A. Afghan and M.M. Baradarani, Asian J. Chem., 22, 5808 (2010).
- F.F. Zhang, L.L. Gan and C.H. Zhou, Bioorg. Med. Chem. Lett., 20, 1881 (2010); https://doi.org/10.1016/j.bmcl.2010.01.159.
- A.C. Karmakar, G.K. Kar and J.K. Ray, J. Chem. Soc., Perkin Trans. 1, 1997 (1991); https://doi.org/10.1039/p19910001997.
- S. Routier, G. Coudert and J.Y. Mérour, Tetrahedron Lett., 42, 7025 (2001); https://doi.org/10.1016/S0040-4039(01)01308-9.
- M. Sacak, J. Appl. Polym. Sci., 74, 1792 (1999); https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1792::AID-APP22>3.0.CO;2-M.
- K.S.V. Santhanam and N.S. Sundaresan, Indian J. Technol., 24, 417 (1986).
- Q. Zhang, J. Chen, Y. Cheng, L. Wang, D. Ma, X. Jing and F. Wang, J. Mater. Chem., 14, 895 (2004); https://doi.org/10.1039/b309630k.
- M. Saravanabhavan, A.F. Ebenazer, V. Murugesan and M. Sekar, J. Adv. Phys., 6, 30 (2017); https://doi.org/10.1166/jap.2017.1286.
- J.V. Grazulevicius, P. Strohriegl, J. Pielichowski and K. Pielichowski, Prog. Polym. Sci., 28, 1297 (2003); https://doi.org/10.1016/S0079-6700(03)00036-4.
- J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns and A.B. Holmes, Nature, 347, 539 (1990); https://doi.org/10.1038/347539a0.
- K. Meerholz, B.L. Volodin, Sandalphon, B. Kippelen and N. Peyghambarian, Nature, 371, 497 (1994); https://doi.org/10.1038/371497a0.
- Y. Wang, Kirk–Othmer Encyclopedia of Chemical Technology, Wiley: New York, vol. 837, edn. 4, p. 18 (1996).
- G. Wang, S. Qian, J. Xu, W. Wang, X. Liu, X. Lu and F. Li, Physica B, 279, 116 (2000); https://doi.org/10.1016/S0921-4526(99)00684-5.
- P.L.T. Boudreault, S. Beaupre´ and M. Leclerc, Polym. Chem., 1, 127 (2010); https://doi.org/10.1039/B9PY00236G.
- S. Beaupré, P.-L.T. Boudreault and M. Leclerc, Adv. Mater., 22, E6 (2010); https://doi.org/10.1002/adma.200903484.
- J. Li and A.C. Grimsdale, Chem. Soc. Rev., 39, 2399 (2010); https://doi.org/10.1039/b915995a.
- J.-F. Morin and M. Leclerc, Macromolecules, 35, 8413 (2002); https://doi.org/10.1021/ma020880x.
- W.E. Moerner and S.M. Silence, Chem. Rev., 94, 127 (1994); https://doi.org/10.1021/cr00025a005.
- Y. Zhang, H. Hokari, T. Wada, Y. Shang, S.M. Marder and H. Sasabe, Tetrahedron Lett., 38, 8721 (1997); https://doi.org/10.1016/S0040-4039(97)10318-5.
- S. Grigalevicius, Synth. Met., 156, 1 (2006); https://doi.org/10.1016/j.synthmet.2005.10.004.
- Z.M. Hudson, Z. Wang, M.G. Helander, Z.H. Lu and S. Wang, Adv. Mater., 24, 2922 (2012); https://doi.org/10.1002/adma.201200927.
- X. Zhang, Y. Wu, S. Ji, H. Guo, P. Song, K. Han, W. Wu, W. Wu, T.D. James and J. Zhao, J. Org. Chem., 75, 2578 (2010); https://doi.org/10.1021/jo100119y.
- L.X. Chen, C.G. Niu, G.M. Zeng, G.H. Huang, G.L. Shen and R.Q. Yu, Anal. Sci., 19, 295 (2003); https://doi.org/10.2116/analsci.19.295.
- D. Curiel, A. Cowley and P.D. Beer, Chem. Commun., 236 (2005); https://doi.org/10.1039/B412363H.
- X. Zhang, L. Chi, S. Ji, Y. Wu, P. Song, K. Han, H. Guo, T.D. James and J. Zhao, J. Am. Chem. Soc., 131, 17452 (2019); https://doi.org/10.1021/ja9060646.
- C.F. Mackenzie, P.R. Spackman, D. Jayatilaka and M.A. Spackman, IUCr J., 4, 575 (2017); https://doi.org/10.1107/S205225251700848X.
- G.M. Sheldrick, Acta Crystallogr., A71, 3 (2015); https://doi.org/10.1107/S2053273314026370.
- A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); https://doi.org/10.1107/S090744490804362X.
- C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 39, 453 (2006); https://doi.org/10.1107/S002188980600731X.
- G. Chakkaravarthi, N. Ramesh, A.K. Mohanakrishnan and V. Manivannan, Acta Crystallogr. Sect. E Struct. Rep. Online, 63, o3564 (2007); https://doi.org/10.1107/S1600536807034800.
- Y. Liu, G.W. Gribble and J.P. Jasinski, Acta Crystallogr. Sect. E Struct. Rep. Online, 63, o738 (2007); https://doi.org/10.1107/S1600536806053694.
- A. Bassindale, Third Dimension in Organic Chemistry (1984).
- F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987); https://doi.org/10.1039/p298700000s1.
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A.
- F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096.
- J. Dalal, N. Sinha, H. Yadav and B. Kumar, RSC Adv., 5, 57735 (2015); https://doi.org/10.1039/C5RA10501C.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., & Spackman, M. A. (2012). Crystal explorer.
- M. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B.
- H. Ghalla, N. Issaoui, F. Bardak and A. Atac, Comput. Mater. Sci., 149, 291 (2018); https://doi.org/10.1016/j.commatsci.2018.03.042.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Knox, J.E. Li, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc. Wallingford, CT (2004).
- H. Eklund, F.K. Gleason and A. Holmgren, Proteins, 11, 13 (1991); https://doi.org/10.1002/prot.340110103.
- J.D. Borsi, C. Csáki, T. Ferencz and W. Oster, Anticancer Drugs, 7(Suppl 3), 121 (1996); https://doi.org/10.1097/00001813-199601000-00016.
- S. Fujii, Y. Nanbu, H. Nonogaki, I. Konishi, T. Mori, H. Masutani and J. Yodoi, Cancer, 68, 1583 (1991); https://doi.org/10.1002/1097-0142(19911001)68:7<1583::AID-CNCR2820680720>3.0.CO;2-N.
- P.Y. Gasdaska, J.E. Oblong, I.A. Cotgreave and G. Powis, Gene Struct. Exp., 1218, 292 (1994); https://doi.org/10.1016/0167-4781(94)90180-5.
- A. Baker, C.M. Payne, M.M. Briehl and G. Powis, Cancer Res., 57, 5162 (1997).
References
K. Zhang, Y. Tao, C. Yang, H. You, Y. Zou, J. Qin and D. Ma, Chem. Mater., 20, 7324 (2008); https://doi.org/10.1021/cm802240q.
P. Rani, V.K. Srivastava and A. Kumar, Eur. J. Med. Chem., 39, 449 (2004); https://doi.org/10.1016/j.ejmech.2003.11.002.
H. Panwar, R.S. Verma, V.K. Srivastava and A. Kumar, Indian J. Chem., 45B, 2099 (2006).
E. Abele, R. Abele, O. Dzenitis and E. Lukevics, Chem. Heterocycl. Compd., 39, 3 (2003); https://doi.org/10.1023/A:1023008422464.
M. Itoigawa, Y. Kashiwada, C. Ito, H. Furukawa, Y. Tachibana, K.F. Bastow and K.H. Lee, J. Nat. Prod., 63, 893 (2000); https://doi.org/10.1021/np000020e.
R.S. Ramsewak, M.G. Nair, G.M. Strasburg, D.L. DeWitt and J.L. Nitiss, J. Agric. Food Chem., 47, 444 (1999); https://doi.org/10.1021/jf9805808.
Y. Tachibana, H. Kikuzaki, N.H. Lajis and N. Nakatani, J. Agric. Food Chem., 49, 5589 (2001); https://doi.org/10.1021/jf010621r.
W. Gu, C. Qiao, S.F. Wang, Y. Hao and T.T. Miao, Bioorg. Med. Chem. Lett., 24, 328 (2014); https://doi.org/10.1016/j.bmcl.2013.11.009.
S. Thiratmatrakul, C. Yenjai, P. Waiwut, O. Vajragupta, P. Reubroycharoen, M. Tohda and C. Boonyarat, Eur. J. Med. Chem., 75, 21 (2014); https://doi.org/10.1016/j.ejmech.2014.01.020.
F. Giraud, M. Bourhis, L. Nauton, V. Théry, L. Herfindal, S.O. Døskeland, F. Anizon and P. Moreau, Bioorg. Chem., 57, 108 (2014); https://doi.org/10.1016/j.bioorg.2014.09.004.
C. Asche and M. Demeunynck, Anticancer Agents Med. Chem., 7, 247 (2007); https://doi.org/10.2174/187152007780058678.
H.J. Knölker and K.R. Reddy, Chem. Rev., 102, 4303 (2002); https://doi.org/10.1021/cr020059j.
S. Ye, Y. Liu, J. Chen, K. Lu, W. Wu, C. Du, Y. Liu, T. Wu, Z. Shuai and G. Yu, Adv. Mater., 22, 4167 (2010); https://doi.org/10.1002/adma.201001392.
R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund and W.R. Salaneck, Nature, 397, 121 (1999); https://doi.org/10.1038/16393.
K. Brunner, A. van Dijken, H. Börner, J.J. Bastiaansen, N.M. Kiggen and B.M. Langeveld, J. Am. Chem. Soc., 126, 6035 (2004); https://doi.org/10.1021/ja049883a.
S.J. Su, H. Sasabe, T. Takeda and J. Kido, Chem. Mater., 20, 1691 (2008); https://doi.org/10.1021/cm703682q.
S.C. Bang, Y. Kim, M.Y. Yun and B.Z. Ahn, Arch. Pharm. Res., 27, 485 (2004); https://doi.org/10.1007/BF02980120.
M.A.J.A. Khan and S.S. Shafi, Asian J. Chem., 15, 1443 (2003).
T. Vandana and K.R. Prasad, Asian J. Chem., 15, 1630 (2003).
A. Bourderioux, P. Kassis, J.Y. Mérour and S. Routier, Tetrahedron, 64, 11012 (2008); https://doi.org/10.1016/j.tet.2008.09.101.
S. Fathalipour, N. Shahrokhnia, A. Afghan and M.M. Baradarani, Asian J. Chem., 22, 5808 (2010).
F.F. Zhang, L.L. Gan and C.H. Zhou, Bioorg. Med. Chem. Lett., 20, 1881 (2010); https://doi.org/10.1016/j.bmcl.2010.01.159.
A.C. Karmakar, G.K. Kar and J.K. Ray, J. Chem. Soc., Perkin Trans. 1, 1997 (1991); https://doi.org/10.1039/p19910001997.
S. Routier, G. Coudert and J.Y. Mérour, Tetrahedron Lett., 42, 7025 (2001); https://doi.org/10.1016/S0040-4039(01)01308-9.
M. Sacak, J. Appl. Polym. Sci., 74, 1792 (1999); https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1792::AID-APP22>3.0.CO;2-M.
K.S.V. Santhanam and N.S. Sundaresan, Indian J. Technol., 24, 417 (1986).
Q. Zhang, J. Chen, Y. Cheng, L. Wang, D. Ma, X. Jing and F. Wang, J. Mater. Chem., 14, 895 (2004); https://doi.org/10.1039/b309630k.
M. Saravanabhavan, A.F. Ebenazer, V. Murugesan and M. Sekar, J. Adv. Phys., 6, 30 (2017); https://doi.org/10.1166/jap.2017.1286.
J.V. Grazulevicius, P. Strohriegl, J. Pielichowski and K. Pielichowski, Prog. Polym. Sci., 28, 1297 (2003); https://doi.org/10.1016/S0079-6700(03)00036-4.
J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns and A.B. Holmes, Nature, 347, 539 (1990); https://doi.org/10.1038/347539a0.
K. Meerholz, B.L. Volodin, Sandalphon, B. Kippelen and N. Peyghambarian, Nature, 371, 497 (1994); https://doi.org/10.1038/371497a0.
Y. Wang, Kirk–Othmer Encyclopedia of Chemical Technology, Wiley: New York, vol. 837, edn. 4, p. 18 (1996).
G. Wang, S. Qian, J. Xu, W. Wang, X. Liu, X. Lu and F. Li, Physica B, 279, 116 (2000); https://doi.org/10.1016/S0921-4526(99)00684-5.
P.L.T. Boudreault, S. Beaupre´ and M. Leclerc, Polym. Chem., 1, 127 (2010); https://doi.org/10.1039/B9PY00236G.
S. Beaupré, P.-L.T. Boudreault and M. Leclerc, Adv. Mater., 22, E6 (2010); https://doi.org/10.1002/adma.200903484.
J. Li and A.C. Grimsdale, Chem. Soc. Rev., 39, 2399 (2010); https://doi.org/10.1039/b915995a.
J.-F. Morin and M. Leclerc, Macromolecules, 35, 8413 (2002); https://doi.org/10.1021/ma020880x.
W.E. Moerner and S.M. Silence, Chem. Rev., 94, 127 (1994); https://doi.org/10.1021/cr00025a005.
Y. Zhang, H. Hokari, T. Wada, Y. Shang, S.M. Marder and H. Sasabe, Tetrahedron Lett., 38, 8721 (1997); https://doi.org/10.1016/S0040-4039(97)10318-5.
S. Grigalevicius, Synth. Met., 156, 1 (2006); https://doi.org/10.1016/j.synthmet.2005.10.004.
Z.M. Hudson, Z. Wang, M.G. Helander, Z.H. Lu and S. Wang, Adv. Mater., 24, 2922 (2012); https://doi.org/10.1002/adma.201200927.
X. Zhang, Y. Wu, S. Ji, H. Guo, P. Song, K. Han, W. Wu, W. Wu, T.D. James and J. Zhao, J. Org. Chem., 75, 2578 (2010); https://doi.org/10.1021/jo100119y.
L.X. Chen, C.G. Niu, G.M. Zeng, G.H. Huang, G.L. Shen and R.Q. Yu, Anal. Sci., 19, 295 (2003); https://doi.org/10.2116/analsci.19.295.
D. Curiel, A. Cowley and P.D. Beer, Chem. Commun., 236 (2005); https://doi.org/10.1039/B412363H.
X. Zhang, L. Chi, S. Ji, Y. Wu, P. Song, K. Han, H. Guo, T.D. James and J. Zhao, J. Am. Chem. Soc., 131, 17452 (2019); https://doi.org/10.1021/ja9060646.
C.F. Mackenzie, P.R. Spackman, D. Jayatilaka and M.A. Spackman, IUCr J., 4, 575 (2017); https://doi.org/10.1107/S205225251700848X.
G.M. Sheldrick, Acta Crystallogr., A71, 3 (2015); https://doi.org/10.1107/S2053273314026370.
A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009); https://doi.org/10.1107/S090744490804362X.
C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 39, 453 (2006); https://doi.org/10.1107/S002188980600731X.
G. Chakkaravarthi, N. Ramesh, A.K. Mohanakrishnan and V. Manivannan, Acta Crystallogr. Sect. E Struct. Rep. Online, 63, o3564 (2007); https://doi.org/10.1107/S1600536807034800.
Y. Liu, G.W. Gribble and J.P. Jasinski, Acta Crystallogr. Sect. E Struct. Rep. Online, 63, o738 (2007); https://doi.org/10.1107/S1600536806053694.
A. Bassindale, Third Dimension in Organic Chemistry (1984).
F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987); https://doi.org/10.1039/p298700000s1.
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A.
F.L. Hirshfeld, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096.
J. Dalal, N. Sinha, H. Yadav and B. Kumar, RSC Adv., 5, 57735 (2015); https://doi.org/10.1039/C5RA10501C.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., & Spackman, M. A. (2012). Crystal explorer.
M. Spackman and J.J. McKinnon, CrystEngComm, 4, 378 (2002); https://doi.org/10.1039/B203191B.
H. Ghalla, N. Issaoui, F. Bardak and A. Atac, Comput. Mater. Sci., 149, 291 (2018); https://doi.org/10.1016/j.commatsci.2018.03.042.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Knox, J.E. Li, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc. Wallingford, CT (2004).
H. Eklund, F.K. Gleason and A. Holmgren, Proteins, 11, 13 (1991); https://doi.org/10.1002/prot.340110103.
J.D. Borsi, C. Csáki, T. Ferencz and W. Oster, Anticancer Drugs, 7(Suppl 3), 121 (1996); https://doi.org/10.1097/00001813-199601000-00016.
S. Fujii, Y. Nanbu, H. Nonogaki, I. Konishi, T. Mori, H. Masutani and J. Yodoi, Cancer, 68, 1583 (1991); https://doi.org/10.1002/1097-0142(19911001)68:7<1583::AID-CNCR2820680720>3.0.CO;2-N.
P.Y. Gasdaska, J.E. Oblong, I.A. Cotgreave and G. Powis, Gene Struct. Exp., 1218, 292 (1994); https://doi.org/10.1016/0167-4781(94)90180-5.
A. Baker, C.M. Payne, M.M. Briehl and G. Powis, Cancer Res., 57, 5162 (1997).