Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Template Synthesis, Characterization and Reactivities of Anionic Transition Metal Complexes with Tetraaza Protonated 11,13-Dimethyl-1,4,7,10-tetraazacyclotrideca-4,6,10,13-tetraene-5,6-Diol as Cation
Corresponding Author(s) : A. Selvan
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Template synthesis, characterization and reactivities of anionic transition metal complexes with tetraazaprotonated 11,13-dimethyl-1,4,7,10-tetraazacyclotrideca-4,6,10,13-tetraene-5,6-diol as cation has been achieved. By magnetic and spectral studies, hexachlorometallate(II) anionic complexes have been found to be octahedral. It is envisioned that the cationic macrocycle may be associating with both the complex and chloride anions through hydrogen bonding thereby rendering the molecule as a whole neutral. Deprotonation, protonation analysis and chemosensor behaviour have been showed by pH variation studies and relevant anionic additions, respectively. All of these data supports the newly synthesized anionic complexes in a strange manner.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.W. Rogers and M.O. Wolf, Coord. Chem. Rev., 233-234, 341 (2002); https://doi.org/10.1016/S0010-8545(02)00023-1.
- F. Pin, M.A. Bernardo and E. Garcia-Espana, Eur. J. Inorg. Chem., 10, 2143 (2000); https://doi.org/10.1002/1099-0682(200010)2000:10<2143::AID-EJIC2143>3.0.CO;2-3.
- R.N. Armstrong, Biochemistry, 39, 13625 (2000);. https://doi.org/10.1021/bi001814v.
- J. Costamagna, G. Ferraudi, B. Matsuhiro, M. Campos-Vallette, J. Canales, M. Villagram, J. Vargas, and M.J. Aguirre, Coord. Chem. Rev., 196, 125 (2000); https://doi.org/10.1016/S00108545(99)00165-4.
- R.H. Holm, P. Kennepohl and E. Solomon, Chem. Rev., 96, 2239 (1996); https://doi.org/10.1021/cr9500390.
- M.D. Ward, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 90, 55 (2002);
- A.S. Borovik, Comments Inorg. Chem., 23, 45(2002); https://doi.org/10.1080/02603590214376.
- V. Amendola, L. Fabrizzi and P. Pallavicini, Coord. Chem. Rev., 216, 435 (2001); https://doi.org/10.1016/S0010-8545(01)00311-3.
- N.F. Curtis, Coord. Chem. Rev., 3, 3 (1968); https://doi.org/10.1016/S0010-8545(00)80104-6.
- I. Kuzu, I. Krummenacher, J. Meyer, F. Armbruster and F. Breher, Dalton Trans., 5836 (2008); https://doi.org/10.1039/B808347A.
- M.D.S. Healy and A.J. Rest, Adv. Inorg. Chem. Radiochem., 21, 1 (1978); https://doi.org/10.1016/S0065-2792(08)60277-0.
- D.S.C. Black and A.J. Hartshorn, Coord. Chem. Rev., 9, 219 (1972); https://doi.org/10.1016/S0010-8545(00)82079-2.
- J.J. Christensen, D.J. Eatough and R.M. Izatt, Chem. Rev., 74, 351 (1974); https://doi.org/10.1021/cr60289a003.
- L. Tei, Ph.D. Thesis, Studies on Functionalised Macrocyclic Ligands, University of Nottingham, U.K. (2001).
- G.A. Melson, Coordination Chemistry of Macrocyclic Complexes; Plenum: New York (1982).
- D.H. Busch, Helv. Chim. Acta., 50, 174 (1967); https://doi.org/10.1002/hlca.19670500914.
- A.W. Tai, E.J. Lien, M.M.C. Lai and T.A.K. Khawaja, J. Med. Chem., 27, 238 (1984); https://doi.org/10.1021/jm00368a024.
- P.H. Wang, G.J. Keck, E.J. Lien and M.M.C. Lai, J. Med.Chem., 33, 608 (1990); https://doi.org/10.1021/jm00164a023.
- K.P. Wainwright, Coord. Chem. Rev., 166, 35 (1997); https://doi.org/10.1016/S0010-8545(97)00003-9.
- E. Kimura, Tetrahedron, 48, 6175 (1992); https://doi.org/10.1016/S0040-4020(01)88212-0.
- A. Bianchi, K. Bowman-James and E. Garcia-Espana, Supramolecular Chemistry of Anions, Wiley-VCH: New York (1997).
- H.J. Schneider and A. Yatsimirsky, Principles and Methods in Supra-molecular Chemistry, John Wiley & Sons: New York (2000).
- P.D. Beer and D.K. Smith, Anion Binding and Recognition by Inorganic based Receptors, In: Progress in Inorganic Chemistry, John Wiley & Sons, vol. 46, pp. 1-96 (1997).
- A. Danby, L. Seib, N.W. Alcock and K. Bowman-James, Chem. Commun., 973 (2000); https://doi.org/10.1039/a909341i.
- K. Kavallieratos, A. Danby, G.J. VanBerkel, M.A. Kelly, R.A. Sachleben, B.A. Moyer and K. Bowman-James, Anal. Chem., 72, 5258 (2000); https://doi.org/10.1021/ac0005971.
- Q. Qian, G.S. Wilson, K. Bowman-James and H.H. Girault, Anal. Chem., 73, 497 (2001); https://doi.org/10.1021/ac000806h.
- K. Kavallieratos, S.R. de Gala, D.J. Austin and R.H. Crabtree, J. Am. Chem. Soc., 119, 2325 (1997); https://doi.org/10.1021/ja964018e.
- K. Kavallieratos, C.M. Bertao and R.H. Crabtree, J. Org. Chem., 64, 1675 (1999); https://doi.org/10.1021/jo982382l.
- S. Valiyaveettil, J.F.J. Engbersen, W. Verboom and D.N. Reinhoudt, Angew. Chem., Int. Ed. Engl., 32, 900 (1993); https://doi.org/10.1002/anie.199309001.
- P.D. Beer, M.G.B. Drew and K. Gradwell, J. Chem. Soc., Perkin Trans. II, 511 (2000); https://doi.org/10.1039/A908106B.
- S. Kubik and R. Goddard, Proc. Natl. Acad. Sci. U.S.A., 99, 5127 (2002); https://doi.org/10.1073/pnas.062625299.
- K. Choi and A.D. Hamilton, J. Am. Chem. Soc., 123, 2456 (2001); https://doi.org/10.1021/ja005772+.
- H.E. Simmons and C.H. Park, J. Am. Chem. Soc., 90, 2428 (1968); https://doi.org/10.1021/ja01011a045.
- C.H. Park and H.E. Simmons, J. Am. Chem. Soc., 90, 2429 (1968); https://doi.org/10.1021/ja01011a046.
- C.H. Park and H.E. Simmons, J. Am. Chem. Soc., 90, 2431 (1968); https://doi.org/10.1021/ja01011a047.
- J.M. Lehn, E. Sonveaux and A.K. Willard, J. Am. Chem. Soc., 100, 4914 (1978); https://doi.org/10.1021/ja00483a059.
- M. Valik, V. Kral, E. Herdtweck and F.P. Schmidtchen, New J. Chem., 31, 703 (2007); https://doi.org/10.1039/B617465E.
- P.A. Gale and R. Quesada, Coord. Chem. Rev., 250, 3219 (2006); https://doi.org/10.1016/j.ccr.2006.05.020.
- V. Amendola, G. Bergamaschi, A. Buttafava, L. Fabbrizzi and E. Monzani, J. Am. Chem. Soc., 132, 147 (2010); https://doi.org/10.1021/ja9046262.
- P. Zhou, F. Xue, S.C.F. Au-Yeung and X.-P. Xu, Acta Cryst., B55, 389 (1999); https://doi.org/10.1107/S0108768198014281.
- G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons, Wiley Interscience Publication: New York (1980).
- A.E. Shvelashvili, E.B. Miminoshvili, V.K. Bellskii, T.O. Vardosanidze and M.G. Tavberidze, Russ. J. Inorg. Chem., 44, 198 (1999).
- H. Zhang, P. Chen, Liang Fang, Acta Cryst., E62, m658 (2006); https://doi.org/10.1107/S1600536806006751.
- M. Mimura, T. Matsuo, T. Nakashima and N. Matsumoto, Inorg. Chem., 3553 (1998); https://doi.org/10.1021/ic971609c.
- Valeria Amendola, Luigi Fabbrizzi and Lorenzo Mosca, Chem. Soc. Rev., 39, 3889 (2010); https://doi.org/10.1039/b822552b.
- P.S. Pallavicini, A. Perotti, A. Poggi, B. Seghi and L. Fabbrizzi, J. Am. Chem. Soc., 109, 5139 (1987); https://doi.org/10.1021/ja00251a016.
References
C.W. Rogers and M.O. Wolf, Coord. Chem. Rev., 233-234, 341 (2002); https://doi.org/10.1016/S0010-8545(02)00023-1.
F. Pin, M.A. Bernardo and E. Garcia-Espana, Eur. J. Inorg. Chem., 10, 2143 (2000); https://doi.org/10.1002/1099-0682(200010)2000:10<2143::AID-EJIC2143>3.0.CO;2-3.
R.N. Armstrong, Biochemistry, 39, 13625 (2000);. https://doi.org/10.1021/bi001814v.
J. Costamagna, G. Ferraudi, B. Matsuhiro, M. Campos-Vallette, J. Canales, M. Villagram, J. Vargas, and M.J. Aguirre, Coord. Chem. Rev., 196, 125 (2000); https://doi.org/10.1016/S00108545(99)00165-4.
R.H. Holm, P. Kennepohl and E. Solomon, Chem. Rev., 96, 2239 (1996); https://doi.org/10.1021/cr9500390.
M.D. Ward, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 90, 55 (2002);
A.S. Borovik, Comments Inorg. Chem., 23, 45(2002); https://doi.org/10.1080/02603590214376.
V. Amendola, L. Fabrizzi and P. Pallavicini, Coord. Chem. Rev., 216, 435 (2001); https://doi.org/10.1016/S0010-8545(01)00311-3.
N.F. Curtis, Coord. Chem. Rev., 3, 3 (1968); https://doi.org/10.1016/S0010-8545(00)80104-6.
I. Kuzu, I. Krummenacher, J. Meyer, F. Armbruster and F. Breher, Dalton Trans., 5836 (2008); https://doi.org/10.1039/B808347A.
M.D.S. Healy and A.J. Rest, Adv. Inorg. Chem. Radiochem., 21, 1 (1978); https://doi.org/10.1016/S0065-2792(08)60277-0.
D.S.C. Black and A.J. Hartshorn, Coord. Chem. Rev., 9, 219 (1972); https://doi.org/10.1016/S0010-8545(00)82079-2.
J.J. Christensen, D.J. Eatough and R.M. Izatt, Chem. Rev., 74, 351 (1974); https://doi.org/10.1021/cr60289a003.
L. Tei, Ph.D. Thesis, Studies on Functionalised Macrocyclic Ligands, University of Nottingham, U.K. (2001).
G.A. Melson, Coordination Chemistry of Macrocyclic Complexes; Plenum: New York (1982).
D.H. Busch, Helv. Chim. Acta., 50, 174 (1967); https://doi.org/10.1002/hlca.19670500914.
A.W. Tai, E.J. Lien, M.M.C. Lai and T.A.K. Khawaja, J. Med. Chem., 27, 238 (1984); https://doi.org/10.1021/jm00368a024.
P.H. Wang, G.J. Keck, E.J. Lien and M.M.C. Lai, J. Med.Chem., 33, 608 (1990); https://doi.org/10.1021/jm00164a023.
K.P. Wainwright, Coord. Chem. Rev., 166, 35 (1997); https://doi.org/10.1016/S0010-8545(97)00003-9.
E. Kimura, Tetrahedron, 48, 6175 (1992); https://doi.org/10.1016/S0040-4020(01)88212-0.
A. Bianchi, K. Bowman-James and E. Garcia-Espana, Supramolecular Chemistry of Anions, Wiley-VCH: New York (1997).
H.J. Schneider and A. Yatsimirsky, Principles and Methods in Supra-molecular Chemistry, John Wiley & Sons: New York (2000).
P.D. Beer and D.K. Smith, Anion Binding and Recognition by Inorganic based Receptors, In: Progress in Inorganic Chemistry, John Wiley & Sons, vol. 46, pp. 1-96 (1997).
A. Danby, L. Seib, N.W. Alcock and K. Bowman-James, Chem. Commun., 973 (2000); https://doi.org/10.1039/a909341i.
K. Kavallieratos, A. Danby, G.J. VanBerkel, M.A. Kelly, R.A. Sachleben, B.A. Moyer and K. Bowman-James, Anal. Chem., 72, 5258 (2000); https://doi.org/10.1021/ac0005971.
Q. Qian, G.S. Wilson, K. Bowman-James and H.H. Girault, Anal. Chem., 73, 497 (2001); https://doi.org/10.1021/ac000806h.
K. Kavallieratos, S.R. de Gala, D.J. Austin and R.H. Crabtree, J. Am. Chem. Soc., 119, 2325 (1997); https://doi.org/10.1021/ja964018e.
K. Kavallieratos, C.M. Bertao and R.H. Crabtree, J. Org. Chem., 64, 1675 (1999); https://doi.org/10.1021/jo982382l.
S. Valiyaveettil, J.F.J. Engbersen, W. Verboom and D.N. Reinhoudt, Angew. Chem., Int. Ed. Engl., 32, 900 (1993); https://doi.org/10.1002/anie.199309001.
P.D. Beer, M.G.B. Drew and K. Gradwell, J. Chem. Soc., Perkin Trans. II, 511 (2000); https://doi.org/10.1039/A908106B.
S. Kubik and R. Goddard, Proc. Natl. Acad. Sci. U.S.A., 99, 5127 (2002); https://doi.org/10.1073/pnas.062625299.
K. Choi and A.D. Hamilton, J. Am. Chem. Soc., 123, 2456 (2001); https://doi.org/10.1021/ja005772+.
H.E. Simmons and C.H. Park, J. Am. Chem. Soc., 90, 2428 (1968); https://doi.org/10.1021/ja01011a045.
C.H. Park and H.E. Simmons, J. Am. Chem. Soc., 90, 2429 (1968); https://doi.org/10.1021/ja01011a046.
C.H. Park and H.E. Simmons, J. Am. Chem. Soc., 90, 2431 (1968); https://doi.org/10.1021/ja01011a047.
J.M. Lehn, E. Sonveaux and A.K. Willard, J. Am. Chem. Soc., 100, 4914 (1978); https://doi.org/10.1021/ja00483a059.
M. Valik, V. Kral, E. Herdtweck and F.P. Schmidtchen, New J. Chem., 31, 703 (2007); https://doi.org/10.1039/B617465E.
P.A. Gale and R. Quesada, Coord. Chem. Rev., 250, 3219 (2006); https://doi.org/10.1016/j.ccr.2006.05.020.
V. Amendola, G. Bergamaschi, A. Buttafava, L. Fabbrizzi and E. Monzani, J. Am. Chem. Soc., 132, 147 (2010); https://doi.org/10.1021/ja9046262.
P. Zhou, F. Xue, S.C.F. Au-Yeung and X.-P. Xu, Acta Cryst., B55, 389 (1999); https://doi.org/10.1107/S0108768198014281.
G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons, Wiley Interscience Publication: New York (1980).
A.E. Shvelashvili, E.B. Miminoshvili, V.K. Bellskii, T.O. Vardosanidze and M.G. Tavberidze, Russ. J. Inorg. Chem., 44, 198 (1999).
H. Zhang, P. Chen, Liang Fang, Acta Cryst., E62, m658 (2006); https://doi.org/10.1107/S1600536806006751.
M. Mimura, T. Matsuo, T. Nakashima and N. Matsumoto, Inorg. Chem., 3553 (1998); https://doi.org/10.1021/ic971609c.
Valeria Amendola, Luigi Fabbrizzi and Lorenzo Mosca, Chem. Soc. Rev., 39, 3889 (2010); https://doi.org/10.1039/b822552b.
P.S. Pallavicini, A. Perotti, A. Poggi, B. Seghi and L. Fabbrizzi, J. Am. Chem. Soc., 109, 5139 (1987); https://doi.org/10.1021/ja00251a016.