Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Hydrogenation of Acetic Acid to Ethanol
Corresponding Author(s) : Qiang Chen
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
The intrinsic kinetic behaviour of catalytic hydrogenation of acetic acid in vapour phase was studied over a multi-metallic catalyst. The rate expression was derived from the sequence of elementary reaction steps based on a Langmuir-Hinshelwood-model involving two types of active sites. Experiments were carried out in a fixed bed reactor, which is similar to an isothermal integral reactor designed to excluding the negative effects of internal and external diffusion. The reaction conditions investigated were as follow:reaction temperature 275-325 ºC, reaction pressure1.5-3.0 MPa, liquid hourly space velocity (sv) 0.3-1.2 h-1, molar ratio of hydrogen to acetic acid (H/AC) 8:20. The results show that conversion of acetic acid increases with increasing the reaction temperature and pressure, but decreases with increasing the space velocity and H/AC. Furthermore, reducing the reaction pressure and increasing reaction temperature, space velocity and H/AC can improve the reaction selectivity of acetic acid to ethanol. The established kinetic model results agreed with experimental results. The relative difference between the calculated value and the experimental value is less than 6 %. The values of model parameters are consistent with the three thermodynamic constraints. The study provided evidence that the intrinsic kinetic model is suitable both mathematically and thermodynamically, and it could be useful in guiding reactor design and optimization of operating conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yan, O.R. Inderwildi, D.A. King and A.M. Boies, Environ. Sci. Technol., 47, 5535 (2013); https://doi.org/10.1021/es305209a.
- M. Gupta, M.L. Smith and J.J. Spivey, ACS Catal., 1, 641 (2011); https://doi.org/10.1021/cs2001048.
- E. Gnansounou and A. Dauriat, J. Sci. Ind. Res. (India), 64, 809 (2005).
- C.R. Nelson, M.A.D. Taylor, D.D. Davidson and L.M. Peters, Olefin Hydration Process (1951).
- H. Momose, K. Kusumoto, Y. Izumi and Y. Mizutani, J. Catal., 77, 23 (1982); https://doi.org/10.1016/0021-9517(82)90142-7.
- N. Katada, Y. Iseki, A. Shichi, N. Fujita, I. Ishino, K. Osaki, T. Torikai and M. Niwa, Appl. Catal. A Gen., 349, 55 (2008); https://doi.org/10.1016/j.apcata.2008.07.005.
- S. Kumar, N. Singh and R. Prasad, Renew. Sustain. Energy Rev., 14, 1830 (2010); https://doi.org/10.1016/j.rser.2010.03.015.
- G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006); https://doi.org/10.1021/cr068360d.
- Renewable Fuels Association, 2018 Ethanol Industry Outlook, 2018. http://www.ethanolresponse.com/wp-content/uploads/2018/02/2018-RFA-Ethanol-Industry-Outlook.pdf.
- Y. Zhang, X. San, N. Tsubaki, Y. Tan and J. Chen, Ind. Eng. Chem. Res., 49, 5485 (2010); https://doi.org/10.1021/ie901882s.
- X. Wu, Y. Wu, S. Zhang, H. Liu, L. Fu and J. Hao, Environ. Pollut., 214, 556 (2016); https://doi.org/10.1016/j.envpol.2016.04.042.
- Y. Wu, S. Zhang, J. Hao, H. Liu, X. Wu, J. Hu, T.J. Wallington, M.P. Walsh, K.M. Zhang and S. Stevanovic, Sci. Total Environ., 574, 332 (2017); https://doi.org/10.1016/j.scitotenv.2016.09.040.
- J. Jiao, J. Li and Y. Bai, J. Clean. Prod., 180, 832 (2018); https://doi.org/10.1016/j.jclepro.2018.01.141.
- H. Hao, Z. Liu, F. Zhao, J. Ren, S. Chang, K. Rong and J. Du, Renew. Sustain. Energy Rev., 82, 645 (2018); https://doi.org/10.1016/j.rser.2017.09.045.
- B. Qian, Chem. Ind., 32, 26 (2014); https://doi.org/10.3969/j.issn.1673-9647.2014.02.006.
- A.B. Stiles, F. Chen, J.B. Harrison, X. Hu, D.A. Storm and H.X. Yang, Ind. Eng. Chem. Res., 30, 811 (1991); https://doi.org/10.1021/ie00053a002.
- R.G. Herman, Catal. Today, 55, 233 (2000); https://doi.org/10.1016/S0920-5861(99)00246-1.
- N. Yoneda, S. Kusano, M. Yasui, P. Pujado and S. Wilcher, Appl. Catal. A Gen., 221, 253 (2001); https://doi.org/10.1016/S0926-860X(01)00800-6.
- W. Rachmady and M. Vannice, J. Catal., 192, 322 (2000); https://doi.org/10.1006/jcat.2000.2863.
- W. Rachmady and M.A. Vannice, J. Catal., 209, 87 (2002); https://doi.org/10.1006/jcat.2002.3623.
- W. Rachmady and M.A. Vannice, J. Catal., 207, 317 (2002); https://doi.org/10.1006/jcat.2002.3556.
- W. Rachmady and M.A. Vannice, J. Catal., 208, 158 (2002); https://doi.org/10.1006/jcat.2002.3560.
- W. Rachmady and M.A. Vannice, J. Catal., 208, 170 (2002); https://doi.org/10.1006/jcat.2002.3561.
- V. Pallassana and M. Neurock, J. Catal., 209, 289 (2002); https://doi.org/10.1006/jcat.2002.3585.
- R. Alcala, J.W. Shabaker, G.W. Huber, M.A. Sanchez-Castillo and J.A. Dumesic, J. Phys. Chem. B, 109, 2074 (2005); https://doi.org/10.1021/jp049354t.
- K. Zhang, H. Zhang, H. Ma, W. Ying and D. Fang, Catal. Lett., 144, 691 (2014); https://doi.org/10.1007/s10562-014-1210-z.
- K. Zhang, Ph.D. Thesis, Study on PtSn/Al2O3 Catalysts for Gas Phase Acetic Acid Hydrogenation to Ethanol, East China University of Science and Technology, Shanghai, China (2014).
- G. Onyestyák, S. Harnos, A. Kaszonyi, M. Štolcová and D. Kalló, Catal. Commun., 27, 159 (2012); https://doi.org/10.1016/j.catcom.2012.07.021.
- G. Onyestyák, S. Harnos, S. Klébert, M. Stolcová, A. Kaszonyi and D. Kalló, Appl. Catal. A Gen., 464–465, 313 (2013); https://doi.org/10.1016/j.apcata.2013.05.042.
- R.D. Lide, CRC Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL (2005).
- S. Tian, J. Cheng, W. Di, Q. Chen, J. Long, X. Luo, Y. Hu, X. Meng, S. Sun and Q. Sun, J. Fuel Chem. Technol., 44, 862 (2016); https://doi.org/10.3969/j.issn.0253-2409.2016.07.012.
- J. Bedard, H. Chiang and A. Bhan, J. Catal., 290, 210 (2012); https://doi.org/10.1016/j.jcat.2012.03.020.
- M. Boudart, D.E. Mears and M.A. Vannice, Ind. Chim. Belge., 32, 281 (1967).
- M.A. Vannice, S.H. Hyun, B. Kalpakci and W.C. Liauh, J. Catal., 56, 358 (1979); https://doi.org/10.1016/0021-9517(79)90128-3.
References
X. Yan, O.R. Inderwildi, D.A. King and A.M. Boies, Environ. Sci. Technol., 47, 5535 (2013); https://doi.org/10.1021/es305209a.
M. Gupta, M.L. Smith and J.J. Spivey, ACS Catal., 1, 641 (2011); https://doi.org/10.1021/cs2001048.
E. Gnansounou and A. Dauriat, J. Sci. Ind. Res. (India), 64, 809 (2005).
C.R. Nelson, M.A.D. Taylor, D.D. Davidson and L.M. Peters, Olefin Hydration Process (1951).
H. Momose, K. Kusumoto, Y. Izumi and Y. Mizutani, J. Catal., 77, 23 (1982); https://doi.org/10.1016/0021-9517(82)90142-7.
N. Katada, Y. Iseki, A. Shichi, N. Fujita, I. Ishino, K. Osaki, T. Torikai and M. Niwa, Appl. Catal. A Gen., 349, 55 (2008); https://doi.org/10.1016/j.apcata.2008.07.005.
S. Kumar, N. Singh and R. Prasad, Renew. Sustain. Energy Rev., 14, 1830 (2010); https://doi.org/10.1016/j.rser.2010.03.015.
G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006); https://doi.org/10.1021/cr068360d.
Renewable Fuels Association, 2018 Ethanol Industry Outlook, 2018. http://www.ethanolresponse.com/wp-content/uploads/2018/02/2018-RFA-Ethanol-Industry-Outlook.pdf.
Y. Zhang, X. San, N. Tsubaki, Y. Tan and J. Chen, Ind. Eng. Chem. Res., 49, 5485 (2010); https://doi.org/10.1021/ie901882s.
X. Wu, Y. Wu, S. Zhang, H. Liu, L. Fu and J. Hao, Environ. Pollut., 214, 556 (2016); https://doi.org/10.1016/j.envpol.2016.04.042.
Y. Wu, S. Zhang, J. Hao, H. Liu, X. Wu, J. Hu, T.J. Wallington, M.P. Walsh, K.M. Zhang and S. Stevanovic, Sci. Total Environ., 574, 332 (2017); https://doi.org/10.1016/j.scitotenv.2016.09.040.
J. Jiao, J. Li and Y. Bai, J. Clean. Prod., 180, 832 (2018); https://doi.org/10.1016/j.jclepro.2018.01.141.
H. Hao, Z. Liu, F. Zhao, J. Ren, S. Chang, K. Rong and J. Du, Renew. Sustain. Energy Rev., 82, 645 (2018); https://doi.org/10.1016/j.rser.2017.09.045.
B. Qian, Chem. Ind., 32, 26 (2014); https://doi.org/10.3969/j.issn.1673-9647.2014.02.006.
A.B. Stiles, F. Chen, J.B. Harrison, X. Hu, D.A. Storm and H.X. Yang, Ind. Eng. Chem. Res., 30, 811 (1991); https://doi.org/10.1021/ie00053a002.
R.G. Herman, Catal. Today, 55, 233 (2000); https://doi.org/10.1016/S0920-5861(99)00246-1.
N. Yoneda, S. Kusano, M. Yasui, P. Pujado and S. Wilcher, Appl. Catal. A Gen., 221, 253 (2001); https://doi.org/10.1016/S0926-860X(01)00800-6.
W. Rachmady and M. Vannice, J. Catal., 192, 322 (2000); https://doi.org/10.1006/jcat.2000.2863.
W. Rachmady and M.A. Vannice, J. Catal., 209, 87 (2002); https://doi.org/10.1006/jcat.2002.3623.
W. Rachmady and M.A. Vannice, J. Catal., 207, 317 (2002); https://doi.org/10.1006/jcat.2002.3556.
W. Rachmady and M.A. Vannice, J. Catal., 208, 158 (2002); https://doi.org/10.1006/jcat.2002.3560.
W. Rachmady and M.A. Vannice, J. Catal., 208, 170 (2002); https://doi.org/10.1006/jcat.2002.3561.
V. Pallassana and M. Neurock, J. Catal., 209, 289 (2002); https://doi.org/10.1006/jcat.2002.3585.
R. Alcala, J.W. Shabaker, G.W. Huber, M.A. Sanchez-Castillo and J.A. Dumesic, J. Phys. Chem. B, 109, 2074 (2005); https://doi.org/10.1021/jp049354t.
K. Zhang, H. Zhang, H. Ma, W. Ying and D. Fang, Catal. Lett., 144, 691 (2014); https://doi.org/10.1007/s10562-014-1210-z.
K. Zhang, Ph.D. Thesis, Study on PtSn/Al2O3 Catalysts for Gas Phase Acetic Acid Hydrogenation to Ethanol, East China University of Science and Technology, Shanghai, China (2014).
G. Onyestyák, S. Harnos, A. Kaszonyi, M. Štolcová and D. Kalló, Catal. Commun., 27, 159 (2012); https://doi.org/10.1016/j.catcom.2012.07.021.
G. Onyestyák, S. Harnos, S. Klébert, M. Stolcová, A. Kaszonyi and D. Kalló, Appl. Catal. A Gen., 464–465, 313 (2013); https://doi.org/10.1016/j.apcata.2013.05.042.
R.D. Lide, CRC Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL (2005).
S. Tian, J. Cheng, W. Di, Q. Chen, J. Long, X. Luo, Y. Hu, X. Meng, S. Sun and Q. Sun, J. Fuel Chem. Technol., 44, 862 (2016); https://doi.org/10.3969/j.issn.0253-2409.2016.07.012.
J. Bedard, H. Chiang and A. Bhan, J. Catal., 290, 210 (2012); https://doi.org/10.1016/j.jcat.2012.03.020.
M. Boudart, D.E. Mears and M.A. Vannice, Ind. Chim. Belge., 32, 281 (1967).
M.A. Vannice, S.H. Hyun, B. Kalpakci and W.C. Liauh, J. Catal., 56, 358 (1979); https://doi.org/10.1016/0021-9517(79)90128-3.