Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Silica Supported Copper-Nickel Oxide Catalyst for Photodegradation of Methylene Blue
Corresponding Author(s) : A.K. Prodjosantoso
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Organic wastes are often harmful for organisms living in water. The compounds may toxic and or carcinogenic. Many methods have been applied to minimize the organic wastes in water, one of which is through fotodegradation process using catalysts. This report is about the use of (Cu-Ni)Ox@SiO2 catalyst for photodegration the methylene blue under the sunlight exposure. A serial method of XRD, SEM-EDX and UV-visible spectroscopy has been used in the study. The catalyst adsorption test was carried out in the dark environment, whilst the catalyst activity test in photodegradation of methylene blue was performed under the sunlight. The measurements on (Cu-Ni)Ox@SiO2 catalyst clearly indicate the presence of tridymite silica (SiO2) with the particle size around 9 nm. The silica band gap energy decreases with the adsorption of copper and nickel on the surface of silica. The adsorption follows the Langmuir adsorption isotherm. The (Cu-Ni)Ox@SiO2 is significantly catalyzed the degradation of methylene blue in water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Natarajan, H.C. Bajaj and R.J. Tayade, J. Environ. Sci. (China), 65, 201 (2018); https://doi.org/10.1016/j.jes.2017.03.011.
- N.M. Julkapli, S. Bagheri and S.B.A. Hamid, Sci. World J., 2014, Article ID 692307 (2014); https://doi.org/10.1155/2014/692307.
- B.A. Fil, C. Ozmetin and M. Korkmaz, Bull. Korean Chem. Soc., 33, 3184 (2012); https://doi.org/10.5012/bkcs.2012.33.10.3184.
- R.V. Kandisa, N. Saibaba KV, K.B. Shaik and R. Gopinath, J. Bioremediat. Biodegrad., 7, 371 (2016); https://doi.org/10.4172/2155-6199.1000371.
- M. Haddad, S. Abid, M. Hamdi and H. Bouallagui, J. Environ. Manage., 223, 936 (2018); https://doi.org/10.1016/j.jenvman.2018.07.009.
- L. Cai, T.B. Chen, S.W. Zheng, H.T. Liu and G.D. Zheng, Chemosphere, 201, 127 (2018); https://doi.org/10.1016/j.chemosphere.2018.02.177.
- A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012); https://doi.org/10.1016/j.jenvman.2011.09.012.
- J. Mathieu-Denoncourt, C.J. Martyniuk, S.R. de Solla, V.K. Balakrishnan and V.S. Langlois, Environ. Sci. Technol., 48, 2952 (2014); https://doi.org/10.1021/es500263x.
- E. Grabowska, J. Reszczyñska and A. Zaleska, Water Res., 46, 5453 (2012); https://doi.org/10.1016/j.watres.2012.07.048.
- E. Forgacs, T. Cserháti and G. Oros, Environ. Int., 30, 953 (2004); https://doi.org/10.1016/j.envint.2004.02.001.
- M.M. Khan, S.F. Adil and A. Al-Mayouf, J. Saudi Chem. Soc., 19, 462 (2015); https://doi.org/10.1016/j.jscs.2015.04.003.
- J. Zhou, F. Ren, S. Zhang, W. Wu, X. Xiao, Y. Liu and C. Jiang, J. Mater. Chem. A Mater. Energy Sustain., 1, 13128 (2013); https://doi.org/10.1039/c3ta12540h.
- D. Selishchev and D. Kozlov, Molecules, 19, 21424 (2014); https://doi.org/10.3390/molecules191221424.
- O. Akhavan and E. Ghaderi, Surf. Coat. Technol., 205, 219 (2010); https://doi.org/10.1016/j.surfcoat.2010.06.036.
- Y.F. Chen, C.Y. Lee, M.Y. Yeng and H.T. Chiu, J. Cryst. Growth, 247, 363 (2003); https://doi.org/10.1016/S0022-0248(02)01938-3.
- S. Huang, L. Gu, N. Zhu, K. Feng, H. Yuan, Z. Lou, Y. Li and A. Shan, Green Chem., 16, 2696 (2014); https://doi.org/10.1039/C3GC42496K.
- X. Zhang and L. Zhang, J. Phys. Chem. C, 114, 18198 (2010); https://doi.org/10.1021/jp105118m.
- L.S. Yoong, F.K. Chong and B.K. Dutta, Energy, 34, 1652 (2009); https://doi.org/10.1016/j.energy.2009.07.024.
- R. Niishiro, H. Kato and A. Kudo, Phys. Chem. Chem. Phys., 7, 2241 (2005); https://doi.org/10.1039/b502147b.
- H. Nasution, E. Purnama, S. Kosela and J. Gunlazuardi, Catal. Commun., 6, 313 (2005); https://doi.org/10.1016/j.catcom.2005.01.011.
- N. Srisittipokakun, Y. Ruangtaweep, W. Rachniyom, K. Boonin and J. Kaewkhao, Results Phys., 7, 3449 (2017); https://doi.org/10.1016/j.rinp.2017.09.010.
- U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145.
- S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub and A.D. Omrani, Ceram. Int., 42, 10259 (2016); https://doi.org/10.1016/j.ceramint.2016.03.153.
- M. Salavati-Niasari and F. Davar, Mater. Lett., 63, 441 (2009); https://doi.org/10.1016/j.matlet.2008.11.023.
- D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade and C.D. Lokhande, J. Alloys Compd., 492, 26 (2010); https://doi.org/10.1016/j.jallcom.2009.11.149.
- M.N. Rifaya, T. Theivasanthi and M. Alagar, Nanosci. Nanotechnol., 2, 134 (2012); https://doi.org/10.5923/j.nn.20120205.01.
- A. Mittal, L. Kurup and J. Mittal, J. Hazard. Mater., 146, 243 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.012.
References
S. Natarajan, H.C. Bajaj and R.J. Tayade, J. Environ. Sci. (China), 65, 201 (2018); https://doi.org/10.1016/j.jes.2017.03.011.
N.M. Julkapli, S. Bagheri and S.B.A. Hamid, Sci. World J., 2014, Article ID 692307 (2014); https://doi.org/10.1155/2014/692307.
B.A. Fil, C. Ozmetin and M. Korkmaz, Bull. Korean Chem. Soc., 33, 3184 (2012); https://doi.org/10.5012/bkcs.2012.33.10.3184.
R.V. Kandisa, N. Saibaba KV, K.B. Shaik and R. Gopinath, J. Bioremediat. Biodegrad., 7, 371 (2016); https://doi.org/10.4172/2155-6199.1000371.
M. Haddad, S. Abid, M. Hamdi and H. Bouallagui, J. Environ. Manage., 223, 936 (2018); https://doi.org/10.1016/j.jenvman.2018.07.009.
L. Cai, T.B. Chen, S.W. Zheng, H.T. Liu and G.D. Zheng, Chemosphere, 201, 127 (2018); https://doi.org/10.1016/j.chemosphere.2018.02.177.
A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012); https://doi.org/10.1016/j.jenvman.2011.09.012.
J. Mathieu-Denoncourt, C.J. Martyniuk, S.R. de Solla, V.K. Balakrishnan and V.S. Langlois, Environ. Sci. Technol., 48, 2952 (2014); https://doi.org/10.1021/es500263x.
E. Grabowska, J. Reszczyñska and A. Zaleska, Water Res., 46, 5453 (2012); https://doi.org/10.1016/j.watres.2012.07.048.
E. Forgacs, T. Cserháti and G. Oros, Environ. Int., 30, 953 (2004); https://doi.org/10.1016/j.envint.2004.02.001.
M.M. Khan, S.F. Adil and A. Al-Mayouf, J. Saudi Chem. Soc., 19, 462 (2015); https://doi.org/10.1016/j.jscs.2015.04.003.
J. Zhou, F. Ren, S. Zhang, W. Wu, X. Xiao, Y. Liu and C. Jiang, J. Mater. Chem. A Mater. Energy Sustain., 1, 13128 (2013); https://doi.org/10.1039/c3ta12540h.
D. Selishchev and D. Kozlov, Molecules, 19, 21424 (2014); https://doi.org/10.3390/molecules191221424.
O. Akhavan and E. Ghaderi, Surf. Coat. Technol., 205, 219 (2010); https://doi.org/10.1016/j.surfcoat.2010.06.036.
Y.F. Chen, C.Y. Lee, M.Y. Yeng and H.T. Chiu, J. Cryst. Growth, 247, 363 (2003); https://doi.org/10.1016/S0022-0248(02)01938-3.
S. Huang, L. Gu, N. Zhu, K. Feng, H. Yuan, Z. Lou, Y. Li and A. Shan, Green Chem., 16, 2696 (2014); https://doi.org/10.1039/C3GC42496K.
X. Zhang and L. Zhang, J. Phys. Chem. C, 114, 18198 (2010); https://doi.org/10.1021/jp105118m.
L.S. Yoong, F.K. Chong and B.K. Dutta, Energy, 34, 1652 (2009); https://doi.org/10.1016/j.energy.2009.07.024.
R. Niishiro, H. Kato and A. Kudo, Phys. Chem. Chem. Phys., 7, 2241 (2005); https://doi.org/10.1039/b502147b.
H. Nasution, E. Purnama, S. Kosela and J. Gunlazuardi, Catal. Commun., 6, 313 (2005); https://doi.org/10.1016/j.catcom.2005.01.011.
N. Srisittipokakun, Y. Ruangtaweep, W. Rachniyom, K. Boonin and J. Kaewkhao, Results Phys., 7, 3449 (2017); https://doi.org/10.1016/j.rinp.2017.09.010.
U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145.
S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub and A.D. Omrani, Ceram. Int., 42, 10259 (2016); https://doi.org/10.1016/j.ceramint.2016.03.153.
M. Salavati-Niasari and F. Davar, Mater. Lett., 63, 441 (2009); https://doi.org/10.1016/j.matlet.2008.11.023.
D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade and C.D. Lokhande, J. Alloys Compd., 492, 26 (2010); https://doi.org/10.1016/j.jallcom.2009.11.149.
M.N. Rifaya, T. Theivasanthi and M. Alagar, Nanosci. Nanotechnol., 2, 134 (2012); https://doi.org/10.5923/j.nn.20120205.01.
A. Mittal, L. Kurup and J. Mittal, J. Hazard. Mater., 146, 243 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.012.