Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis, Computational and Biological Evaluation of 4-Amino-3,5-dimercapto-1,2,4-triazole Surface Functionalized Gold Nanoparticles
Corresponding Author(s) : V. Veena
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Gold nanoparticles (AuNPs) are an obvious choice for rapid advance in nanotechnology due to their amenability of synthesis, functionalization and less toxicity. Functionalization of AuNP surface with 4-amino-3,5-dimercapto-1,2,4-triazole (ADMT) ligand as ADMT-AuNPs was investigated with the aim to probe the suitability of innovative product to develop new antibacterial and anticancer strategies. Various characterization studies like UV-spectra, Zeta size, Zeta potential, XRD, SEM, TEM and FTIR results of AuNPs and ADMT-AuNPs have been performed to study the structural and electronic properties. The studies revealed that the functionalized nanoparticles are highly crystalline in nature with the sizes ranging between 20-22 and 50-55 nm for AuNPs and ADMT-AuNPs, respectively with FCC structures. The characterization data reveals that the synthesized nanoparticles are stable and presence of strong interactions between the metallic surface and the organic ligand. Further, ADMT-AuNPs showed good antibacterial activity against Gram-positive and Gram-negative bacteria. MTT assay exhibited the cell viability with an IC50 value of 45.32 % v/v for ADMT-AuNPs against breast adenocarcinoma (MCF-7) cell lines. Molecular characterization i.e., in silico docking analysis helped in identifying and organizing the structural similarity/diversity at the molecular level. The in silico study indicated that the structure S1a has good glide score and glide energy for H-bonding among the possible conformations against bacterial and breast cancer protein. Molecular docking studies confirmed the introduction of conformational changes that are essential to surpass the potential energy barriers of ADMT-AuNPs for biocompatibility and proved that they hold a promising future in the medical field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.N. Pendleton, S.P. Gorman and B.F. Gilmore, Expert Rev. Anti Infect. Ther., 11, 297 (2013); https://doi.org/10.1586/eri.13.12.
- J.B. Delehanty, K. Boeneman, C.E. Bradburne, K. Robertson, J.E. Bongard and I.L. Medintz, Ther. Deliv., 1, 411 (2010); https://doi.org/10.4155/tde.10.27.
- D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel and C.A. Mirkin, Angew. Chem. Int. Ed., 49, 3280 (2010); https://doi.org/10.1002/anie.200904359.
- R.A. Petros and J.M. DeSimone, Nat. Rev. Drug Discov., 9, 615 (2010); https://doi.org/10.1038/nrd2591.
- J. Shi, A.R. Votruba, O.C. Farokhzad and R. Langer, Nano Lett., 10, 3223 (2010); https://doi.org/10.1021/nl102184c.
- M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+.
- P. Galletto, P.F. Brevet, H.H. Girault, R. Antoine and M. Broyer, J. Phys. Chem. B, 103, 8706 (1999); https://doi.org/10.1021/jp991937t.
- J. Fokkema, J. Fermie, N. Liv, D.J. van den Heuvel, T.O.M. Konings, G.A. Blab, A. Meijerink, J. Klumperman and H.C. Gerritsen, Scient. Rep., 8, Article No. 13625 (2018); https://doi.org/10.1038/s41598-018-31836-1.
- W. Baschong and N.G. Wrigley, J. Electron Microsc. Technol., 14, 313 (1990); https://doi.org/10.1002/jemt.1060140405.
- C.A. Mirkin, R.L. Letsinger, R.C. Mucic and J.J. Storhoff, Nature, 382, 607 (1996); https://doi.org/10.1038/382607a0.
- J.G. Holt, R.N. Krieg, P.H.A. Sneath and J.T. Staley, S.T. Williams Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins Baltimore, edn 9 (1994).
- X. Huang, P.K. Jain, I.H. El-Sayed and M.A. El-Sayed, Photochem. Photobiol., 82, 412 (2006); https://doi.org/10.1562/2005-12-14-RA-754.
- C.M. Niemeyer, Angew. Chem., 113, 4254 (2001); https://doi.org/10.1002/1521-3757(20011119)113:22<4254::AID-ANGE4254>3.0.CO;2-D.
- A. Csaki, G. Maubach, D. Born, J. Reichert and W. Fritzsche, Single Mol., 3, 275 (2002); https://doi.org/10.1002/1438-5171(200211)3:5/6<275::AID-SIMO275>3.0.CO;2-0.
- E. Katz, A.N. Shipway and I. Willner, ed.: G. Schmid, Biomaterial-Nanoparticle Hybrid Systems: Synthesis, Properties and Applications, in Nanoparticles-From Theory to Applications, Wiley-VCH: Weinheim, pp. 368-421 (2003).
- W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S.C. Williams, R. Boudreau, M.A.L. Gros, C.A. Larabell and A.P. Alivisatos, Nanotechnology, 14, R15 (2003); https://doi.org/10.1088/0957-4484/14/7/201.
- T. Pal, T.K. Sau and N.R. Jana, Langmuir, 13, 1481 (1997); https://doi.org/10.1021/la960834o.
- D.V. Goia and E. Matijevic, New J. Chem., 22, 1203 (1998); https://doi.org/10.1039/a709236i.
- C.H. Munro, W.E. Smith, M. Garner, J. Clarkson and P.C. White, Langmuir, 11, 3712 (1995); https://doi.org/10.1021/la00010a021.
- K. Esumi, T. Tano, K. Torigoe and K. Meguro, Chem. Mater., 2, 564 (1990); https://doi.org/10.1021/cm00011a019.
- M.L. Rodriguez-Sanchez, M.C. Blanco and M.A. Lopez-Quintela, J. Phys. Chem. B, 104, 9683 (2000); https://doi.org/10.1021/jp001761r.
- J. Zhu, S. Liu, O. Palchik, Y. Koltypin and A. Gedanken, Langmuir, 16, 6396 (2000); https://doi.org/10.1021/la991507u.
- I. Pastoriza-Santos and L.M. Liz-Marzan, Langmuir, 18, 2888 (2002); https://doi.org/10.1021/la015578g.
- S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006); https://doi.org/10.1021/bp0501423.
- S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, Chem. Mater., 17, 566 (2005); https://doi.org/10.1021/cm048292g.
- A. Rai, A. Singh, A. Ahmad and M. Sastry, Langmuir, 22, 736 (2006); https://doi.org/10.1021/la052055q.
- B. Ankamwar, C. Damle, A. Ahmad and M. Sastry, J. Nanosci. Nanotechnol., 5, 1665 (2005); https://doi.org/10.1166/jnn.2005.184.
- J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055.
- M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R.J. Whyman, J. Chem. Soc. Chem. Commun., 0, 801 (1994); https://doi.org/10.1039/C39940000801.
- M.S. Muthu and S. Singh, Nanomedicine, 4, 105 (2009); https://doi.org/10.2217/17435889.4.1.105.
- E. Duguet, S. Vasseur, S. Mornet and J.-M. Devoisselle, Nanomedicine, 1, 157 (2006); https://doi.org/10.2217/17435889.1.2.157.
- J.B. Hall, M.A. Dobrovolskaia, A.K. Patri and S.E. McNeil, Nanomedicine, 2, 789 (2007); https://doi.org/10.2217/17435889.2.6.789.
- D. Zhang, O. Neumann, H. Wang, V.M. Yuwono, A. Barhoumi, M. Perham, J.D. Hartgerink, P. Wittung-Stafshede and N.J. Halas, Nano Lett., 9, 666 (2009); https://doi.org/10.1021/nl803054h.
- C.N.R. Rao, A. Müller and A.K. Cheetham, NanomaterialsAn Introduction, The Chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 1-11 (2005).
- K.R. Brown, D.G. Walter and M.J. Natan, Chem. Mater., 12, 306 (2000); https://doi.org/10.1021/cm980065p.
- M.N. Martin, J.I. Basham, P. Chando and S.-K. Eah, Langmuir, 26, 7410 (2010); https://doi.org/10.1021/la100591h.
- B.-K. Pong, H.I. Elim, J.-X. Chong, W. Ji, B.L. Trout and J.-Y. Lee, J. Phys. Chem. C, 111, 6281 (2007); https://doi.org/10.1021/jp068666o.
- J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech, J. Phys. Chem. B, 110, 15700 (2006); https://doi.org/10.1021/jp061667w.
- S.M. Saraiva and J.F. de Oliveira, J. Dispers. Sci. Technol., 23, 837 (2002); https://doi.org/10.1081/DIS-120015980.
- J. Turkevich, Gold Bull., 18, 125 (1985); https://doi.org/10.1007/BF03214694.
- P.J.G. Goulet and R.B. Lennox, J. Am. Chem. Soc., 132, 9582 (2010); https://doi.org/10.1021/ja104011b.
- G. Frens, Nature Phys. Sci., 241, 20 (1973); https://doi.org/10.1038/physci241020a0.
- M.K. Chow and C.F. Zukoski, J. Colloid Interface Sci., 165, 97 (1994); https://doi.org/10.1006/jcis.1994.1210.
- R.V. Lapshin, A.P. Alekhin, A.G. Kirilenko, S.L. Odintsov and V.A. Krotkov, J. Surf. Invest. X-ray, Synchrotron Neutron Tech., 4, 1 (2010); https://doi.org/10.1134/S1027451010010015.
- A.P. Alekhin, G.M. Boleiko, S.A. Gudkova, A.M. Markeev, A.A. Sigarev, V.F. Toknova, A.G. Kirilenko, R.V. Lapshin, E.N. Kozlov and D.V. Tetyukhin, Nanotechnol. Russ., 5, 696 (2010); https://doi.org/10.1134/S1995078010090144.
- S. Bertazzo and K. Rezwan, Langmuir, 26, 3364 (2009); https://doi.org/10.1021/la903140k.
- S. Bertazzo, W.F. Zambuzzi, H.A. da Silva, C.V. Ferreira and C.A. Bertran, Clin. Oral Implants Res., 20, 288 (2009); https://doi.org/10.1111/j.1600-0501.2008.01642.x.
- G. London, K.-Y. Chen, G.T. Carroll and B.L. Feringa, Chem. Eur. J., 19, 10690 (2013); https://doi.org/10.1002/chem.201300500.
- R.C. Doty, T.R. Tshikhudo, M. Brust and D.G. Fernig, Chem. Mater., 17, 4630 (2005); https://doi.org/10.1021/cm0508017.
- A. Ulman, Chem. Rev., 96, 1533 (1996); https://doi.org/10.1021/cr9502357.
- M. Schulz-Dobrick, K.V. Sarathy and M. Jansen, J. Am. Chem. Soc., 127, 12816 (2005); https://doi.org/10.1021/ja054734t.
- E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A.M. Masdeu-Bulto and B. Chaudret, J. Organomet. Chem., 689, 4601 (2004); https://doi.org/10.1016/j.jorganchem.2004.09.006.
- A. Kotiaho, R. Lahtinen, A. Efimov, H. Lehtivuori, N.V. Tkachenko, T. Kanerva and H. Lemmetyinen, J. Photochem. Photobiol. Chem., 212, 129 (2010); https://doi.org/10.1016/j.jphotochem.2010.04.005.
- H.W. Duan and S.M. Nie, J. Am. Chem. Soc., 129, 2412 (2007); https://doi.org/10.1021/ja067727t.
- N. Camillone III, C.E.D. Chidsey, G.-Y. Liu, T.M. Putvinski and G. Scoles, J. Chem. Phys., 94, 8493 (1991); https://doi.org/10.1063/1.460082.
- L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. Chem., 43, 437 (1992); https://doi.org/10.1146/annurev.pc.43.100192.002253.
- H.A. Biebuyck, C.D. Bain and G.M. Whitesides, Langmuir, 10, 1825 (1994); https://doi.org/10.1021/la00018a034.
- F. Schreiber, Prog. Surf. Sci., 65, 151 (2000); https://doi.org/10.1016/S0079-6816(00)00024-1.
- J.J. Gooding, F. Mearns, W. Yang and J. Liu, Electroanalysis, 15, 81 (2003); https://doi.org/10.1002/elan.200390017.
- D.R. Lide, Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL, USA, edn 82 (2001).
- P.C. Ray, Chem. Rev., 110, 5332 (2010); https://doi.org/10.1021/cr900335q.
- C.B. Murray, C.R. Kagan and M.G. Bawendi, Science, 270, 1335 (1995); https://doi.org/10.1126/science.270.5240.1335.
- C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley and C.R. Kagan, IBM J. Res. Develop., 45, 47 (2001); https://doi.org/10.1147/rd.451.0047.
- Z.L. Jiang, Z.W. Feng, Y.S. Li, F. Li, F.X. Zhong, J.Y. Xie and X.H. Yi, Sci. China B Chem., 44, 175 (2001); https://doi.org/10.1007/BF02879535.
- P.C. Guha and S.C. De, J. Chem. Soc., 125, 1218 (1924); https://doi.org/10.1039/CT9242501215.
- S. Pal, Y.K. Tak and J.M. Song, Appl. Environ. Microbiol., 73, 1712 (2007); https://doi.org/10.1128/AEM.02218-06.
- M.C. Alley, MTT Cell Proliferation Assay Instruction Guide-ATCC, VA, USA.
- T. Neema, P. Kumud and P. Bhasker, Int. J. PharmTech. Res., 7, 156 (2015).
- M.A. Lill and M.L. Danielson, J. Comput. Aided Mol. Discov., 25, 13 (2011); https://doi.org/10.1007/s10822-010-9395-8.
- D. Philip, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 71, 80 (2008); https://doi.org/10.1016/j.saa.2007.11.012.
- S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003.
- R.S. Patil, R.M. Kokate, C. Jambhale, S. Pawar, S. Han and S. Kolekar, Adv. Nat. Sci. Nanosci. Nanotechnol., 3, 015013 (2012); https://doi.org/10.1088/2043-6262/3/1/015013.
- D.N. Furlong, A. Launikonis, W.H.F. Sasse and J.V. Sanders, J. Chem. Soc., Faraday Trans. I, 80, 571 (1984); https://doi.org/10.1039/f19848000571.
- E.M.S. Azzam, A.M. Badawi, A.R.E. Alawady and A. Soliman, J. Dispers. Sci. Technol., 30, 540 (2009); https://doi.org/10.1080/01932690802553932.
- M.R. Bindhu and M. Umadevi, Mater. Lett., 120, 122 (2014); https://doi.org/10.1016/j.matlet.2014.01.108.
- M.F. Zawrah and S.I. Abd El-Moez, Life Sci. J., 8, 37 (2011).
- M. Fritsche, C. Haessler and G. Brandner, Oncogene, 8, 307 (1993).
- R.J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 9, 47 (2008); https://doi.org/10.1038/nrm2308.
- Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. L and X. Jiang, Biomaterials, 33, 2327 (2012); https://doi.org/10.1016/j.biomaterials.2011.11.057.
- A. Rai, A. Prabhune and C.C. Perry, J. Mater. Chem., 20, 6789 (2010); https://doi.org/10.1039/c0jm00817f.
References
J.N. Pendleton, S.P. Gorman and B.F. Gilmore, Expert Rev. Anti Infect. Ther., 11, 297 (2013); https://doi.org/10.1586/eri.13.12.
J.B. Delehanty, K. Boeneman, C.E. Bradburne, K. Robertson, J.E. Bongard and I.L. Medintz, Ther. Deliv., 1, 411 (2010); https://doi.org/10.4155/tde.10.27.
D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel and C.A. Mirkin, Angew. Chem. Int. Ed., 49, 3280 (2010); https://doi.org/10.1002/anie.200904359.
R.A. Petros and J.M. DeSimone, Nat. Rev. Drug Discov., 9, 615 (2010); https://doi.org/10.1038/nrd2591.
J. Shi, A.R. Votruba, O.C. Farokhzad and R. Langer, Nano Lett., 10, 3223 (2010); https://doi.org/10.1021/nl102184c.
M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+.
P. Galletto, P.F. Brevet, H.H. Girault, R. Antoine and M. Broyer, J. Phys. Chem. B, 103, 8706 (1999); https://doi.org/10.1021/jp991937t.
J. Fokkema, J. Fermie, N. Liv, D.J. van den Heuvel, T.O.M. Konings, G.A. Blab, A. Meijerink, J. Klumperman and H.C. Gerritsen, Scient. Rep., 8, Article No. 13625 (2018); https://doi.org/10.1038/s41598-018-31836-1.
W. Baschong and N.G. Wrigley, J. Electron Microsc. Technol., 14, 313 (1990); https://doi.org/10.1002/jemt.1060140405.
C.A. Mirkin, R.L. Letsinger, R.C. Mucic and J.J. Storhoff, Nature, 382, 607 (1996); https://doi.org/10.1038/382607a0.
J.G. Holt, R.N. Krieg, P.H.A. Sneath and J.T. Staley, S.T. Williams Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins Baltimore, edn 9 (1994).
X. Huang, P.K. Jain, I.H. El-Sayed and M.A. El-Sayed, Photochem. Photobiol., 82, 412 (2006); https://doi.org/10.1562/2005-12-14-RA-754.
C.M. Niemeyer, Angew. Chem., 113, 4254 (2001); https://doi.org/10.1002/1521-3757(20011119)113:22<4254::AID-ANGE4254>3.0.CO;2-D.
A. Csaki, G. Maubach, D. Born, J. Reichert and W. Fritzsche, Single Mol., 3, 275 (2002); https://doi.org/10.1002/1438-5171(200211)3:5/6<275::AID-SIMO275>3.0.CO;2-0.
E. Katz, A.N. Shipway and I. Willner, ed.: G. Schmid, Biomaterial-Nanoparticle Hybrid Systems: Synthesis, Properties and Applications, in Nanoparticles-From Theory to Applications, Wiley-VCH: Weinheim, pp. 368-421 (2003).
W.J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S.C. Williams, R. Boudreau, M.A.L. Gros, C.A. Larabell and A.P. Alivisatos, Nanotechnology, 14, R15 (2003); https://doi.org/10.1088/0957-4484/14/7/201.
T. Pal, T.K. Sau and N.R. Jana, Langmuir, 13, 1481 (1997); https://doi.org/10.1021/la960834o.
D.V. Goia and E. Matijevic, New J. Chem., 22, 1203 (1998); https://doi.org/10.1039/a709236i.
C.H. Munro, W.E. Smith, M. Garner, J. Clarkson and P.C. White, Langmuir, 11, 3712 (1995); https://doi.org/10.1021/la00010a021.
K. Esumi, T. Tano, K. Torigoe and K. Meguro, Chem. Mater., 2, 564 (1990); https://doi.org/10.1021/cm00011a019.
M.L. Rodriguez-Sanchez, M.C. Blanco and M.A. Lopez-Quintela, J. Phys. Chem. B, 104, 9683 (2000); https://doi.org/10.1021/jp001761r.
J. Zhu, S. Liu, O. Palchik, Y. Koltypin and A. Gedanken, Langmuir, 16, 6396 (2000); https://doi.org/10.1021/la991507u.
I. Pastoriza-Santos and L.M. Liz-Marzan, Langmuir, 18, 2888 (2002); https://doi.org/10.1021/la015578g.
S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006); https://doi.org/10.1021/bp0501423.
S.S. Shankar, A. Rai, A. Ahmad and M. Sastry, Chem. Mater., 17, 566 (2005); https://doi.org/10.1021/cm048292g.
A. Rai, A. Singh, A. Ahmad and M. Sastry, Langmuir, 22, 736 (2006); https://doi.org/10.1021/la052055q.
B. Ankamwar, C. Damle, A. Ahmad and M. Sastry, J. Nanosci. Nanotechnol., 5, 1665 (2005); https://doi.org/10.1166/jnn.2005.184.
J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055.
M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R.J. Whyman, J. Chem. Soc. Chem. Commun., 0, 801 (1994); https://doi.org/10.1039/C39940000801.
M.S. Muthu and S. Singh, Nanomedicine, 4, 105 (2009); https://doi.org/10.2217/17435889.4.1.105.
E. Duguet, S. Vasseur, S. Mornet and J.-M. Devoisselle, Nanomedicine, 1, 157 (2006); https://doi.org/10.2217/17435889.1.2.157.
J.B. Hall, M.A. Dobrovolskaia, A.K. Patri and S.E. McNeil, Nanomedicine, 2, 789 (2007); https://doi.org/10.2217/17435889.2.6.789.
D. Zhang, O. Neumann, H. Wang, V.M. Yuwono, A. Barhoumi, M. Perham, J.D. Hartgerink, P. Wittung-Stafshede and N.J. Halas, Nano Lett., 9, 666 (2009); https://doi.org/10.1021/nl803054h.
C.N.R. Rao, A. Müller and A.K. Cheetham, NanomaterialsAn Introduction, The Chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 1-11 (2005).
K.R. Brown, D.G. Walter and M.J. Natan, Chem. Mater., 12, 306 (2000); https://doi.org/10.1021/cm980065p.
M.N. Martin, J.I. Basham, P. Chando and S.-K. Eah, Langmuir, 26, 7410 (2010); https://doi.org/10.1021/la100591h.
B.-K. Pong, H.I. Elim, J.-X. Chong, W. Ji, B.L. Trout and J.-Y. Lee, J. Phys. Chem. C, 111, 6281 (2007); https://doi.org/10.1021/jp068666o.
J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech, J. Phys. Chem. B, 110, 15700 (2006); https://doi.org/10.1021/jp061667w.
S.M. Saraiva and J.F. de Oliveira, J. Dispers. Sci. Technol., 23, 837 (2002); https://doi.org/10.1081/DIS-120015980.
J. Turkevich, Gold Bull., 18, 125 (1985); https://doi.org/10.1007/BF03214694.
P.J.G. Goulet and R.B. Lennox, J. Am. Chem. Soc., 132, 9582 (2010); https://doi.org/10.1021/ja104011b.
G. Frens, Nature Phys. Sci., 241, 20 (1973); https://doi.org/10.1038/physci241020a0.
M.K. Chow and C.F. Zukoski, J. Colloid Interface Sci., 165, 97 (1994); https://doi.org/10.1006/jcis.1994.1210.
R.V. Lapshin, A.P. Alekhin, A.G. Kirilenko, S.L. Odintsov and V.A. Krotkov, J. Surf. Invest. X-ray, Synchrotron Neutron Tech., 4, 1 (2010); https://doi.org/10.1134/S1027451010010015.
A.P. Alekhin, G.M. Boleiko, S.A. Gudkova, A.M. Markeev, A.A. Sigarev, V.F. Toknova, A.G. Kirilenko, R.V. Lapshin, E.N. Kozlov and D.V. Tetyukhin, Nanotechnol. Russ., 5, 696 (2010); https://doi.org/10.1134/S1995078010090144.
S. Bertazzo and K. Rezwan, Langmuir, 26, 3364 (2009); https://doi.org/10.1021/la903140k.
S. Bertazzo, W.F. Zambuzzi, H.A. da Silva, C.V. Ferreira and C.A. Bertran, Clin. Oral Implants Res., 20, 288 (2009); https://doi.org/10.1111/j.1600-0501.2008.01642.x.
G. London, K.-Y. Chen, G.T. Carroll and B.L. Feringa, Chem. Eur. J., 19, 10690 (2013); https://doi.org/10.1002/chem.201300500.
R.C. Doty, T.R. Tshikhudo, M. Brust and D.G. Fernig, Chem. Mater., 17, 4630 (2005); https://doi.org/10.1021/cm0508017.
A. Ulman, Chem. Rev., 96, 1533 (1996); https://doi.org/10.1021/cr9502357.
M. Schulz-Dobrick, K.V. Sarathy and M. Jansen, J. Am. Chem. Soc., 127, 12816 (2005); https://doi.org/10.1021/ja054734t.
E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A.M. Masdeu-Bulto and B. Chaudret, J. Organomet. Chem., 689, 4601 (2004); https://doi.org/10.1016/j.jorganchem.2004.09.006.
A. Kotiaho, R. Lahtinen, A. Efimov, H. Lehtivuori, N.V. Tkachenko, T. Kanerva and H. Lemmetyinen, J. Photochem. Photobiol. Chem., 212, 129 (2010); https://doi.org/10.1016/j.jphotochem.2010.04.005.
H.W. Duan and S.M. Nie, J. Am. Chem. Soc., 129, 2412 (2007); https://doi.org/10.1021/ja067727t.
N. Camillone III, C.E.D. Chidsey, G.-Y. Liu, T.M. Putvinski and G. Scoles, J. Chem. Phys., 94, 8493 (1991); https://doi.org/10.1063/1.460082.
L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. Chem., 43, 437 (1992); https://doi.org/10.1146/annurev.pc.43.100192.002253.
H.A. Biebuyck, C.D. Bain and G.M. Whitesides, Langmuir, 10, 1825 (1994); https://doi.org/10.1021/la00018a034.
F. Schreiber, Prog. Surf. Sci., 65, 151 (2000); https://doi.org/10.1016/S0079-6816(00)00024-1.
J.J. Gooding, F. Mearns, W. Yang and J. Liu, Electroanalysis, 15, 81 (2003); https://doi.org/10.1002/elan.200390017.
D.R. Lide, Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL, USA, edn 82 (2001).
P.C. Ray, Chem. Rev., 110, 5332 (2010); https://doi.org/10.1021/cr900335q.
C.B. Murray, C.R. Kagan and M.G. Bawendi, Science, 270, 1335 (1995); https://doi.org/10.1126/science.270.5240.1335.
C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley and C.R. Kagan, IBM J. Res. Develop., 45, 47 (2001); https://doi.org/10.1147/rd.451.0047.
Z.L. Jiang, Z.W. Feng, Y.S. Li, F. Li, F.X. Zhong, J.Y. Xie and X.H. Yi, Sci. China B Chem., 44, 175 (2001); https://doi.org/10.1007/BF02879535.
P.C. Guha and S.C. De, J. Chem. Soc., 125, 1218 (1924); https://doi.org/10.1039/CT9242501215.
S. Pal, Y.K. Tak and J.M. Song, Appl. Environ. Microbiol., 73, 1712 (2007); https://doi.org/10.1128/AEM.02218-06.
M.C. Alley, MTT Cell Proliferation Assay Instruction Guide-ATCC, VA, USA.
T. Neema, P. Kumud and P. Bhasker, Int. J. PharmTech. Res., 7, 156 (2015).
M.A. Lill and M.L. Danielson, J. Comput. Aided Mol. Discov., 25, 13 (2011); https://doi.org/10.1007/s10822-010-9395-8.
D. Philip, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 71, 80 (2008); https://doi.org/10.1016/j.saa.2007.11.012.
S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004); https://doi.org/10.1016/j.jcis.2004.03.003.
R.S. Patil, R.M. Kokate, C. Jambhale, S. Pawar, S. Han and S. Kolekar, Adv. Nat. Sci. Nanosci. Nanotechnol., 3, 015013 (2012); https://doi.org/10.1088/2043-6262/3/1/015013.
D.N. Furlong, A. Launikonis, W.H.F. Sasse and J.V. Sanders, J. Chem. Soc., Faraday Trans. I, 80, 571 (1984); https://doi.org/10.1039/f19848000571.
E.M.S. Azzam, A.M. Badawi, A.R.E. Alawady and A. Soliman, J. Dispers. Sci. Technol., 30, 540 (2009); https://doi.org/10.1080/01932690802553932.
M.R. Bindhu and M. Umadevi, Mater. Lett., 120, 122 (2014); https://doi.org/10.1016/j.matlet.2014.01.108.
M.F. Zawrah and S.I. Abd El-Moez, Life Sci. J., 8, 37 (2011).
M. Fritsche, C. Haessler and G. Brandner, Oncogene, 8, 307 (1993).
R.J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 9, 47 (2008); https://doi.org/10.1038/nrm2308.
Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. L and X. Jiang, Biomaterials, 33, 2327 (2012); https://doi.org/10.1016/j.biomaterials.2011.11.057.
A. Rai, A. Prabhune and C.C. Perry, J. Mater. Chem., 20, 6789 (2010); https://doi.org/10.1039/c0jm00817f.