Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
High Yielding, Base Catalyzed C6 Regioselective Amination and N9 Alkylation in Purine Nucleotide
Corresponding Author(s) : Khushal Kapadiya
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
2,6-Dichloropurine is an interesting new nucleoside which gave regioselectively various 2-derivatized or 6-derivatized purines by using a secondary amines. An efficient, simple and regioselective synthesis of C6 morpholine, N9 alkylated purine nucleoside derivatives were attained via chloro-amine coupling reaction between 2,6-dichloropurine with morpholine followed by commercial alkylation method using DMF and K2CO3. Over the traditionally used protocols and procedure, it have been exhibited advance benefits such as admirable yield, simple reaction conditions and modest influence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross and M. Beller, Science, 297, 1676 (2002); https://doi.org/10.1126/science.1074801.
- Y. Ju and R. Varma, Green Chem., 6, 219 (2004); https://doi.org/10.1039/b401620c.
- J. Shah and K. Mohanraj, Indian J. Pharm. Sci., 76, 46 (2014).
- M. Youssef and M. Amin, Molecules, 15, 8827 (2010); https://doi.org/10.3390/molecules15128827.
- K.M. Venugopala, Asian J. Chem., 30, 684 (2018); https://doi.org/10.14233/ajchem.2018.21158.
- R. Freer, G. Geen, T. Ramsay, A. Share, G. Slater and N. Smith, Tetrahedron, 56, 4589 (2000); https://doi.org/10.1016/S0040-4020(00)00373-2.
- A. Lanver and H. Schmalz, Molecules, 10, 508 (2005); https://doi.org/10.3390/10020508.
- K. Kapadiya, Y. Jadeja and R. Khunt, J. Heterocycl. Chem., 55, 199 (2018); https://doi.org/10.1002/jhet.3025.
- H. Xu, R. Ye, S. Yang, R. Li and X. Yang, Chin. Chem. Lett., 25, 29 (2014); https://doi.org/10.1016/j.cclet.2013.10.011.
- M. Paoli, S. Piccini, M. Rodriquez and A. Sega, J. Org. Chem., 69, 2881 (2004); https://doi.org/10.1021/jo035807z.
- W. Parker, Chem. Rev., 109, 2880 (2009); https://doi.org/10.1021/cr900028p.
- E. de Clercq, Nucleos. Nucleot. Nucl. Acids, 31, 339 (2012); https://doi.org/10.1080/15257770.2012.657383.
- M. Legraverend and D. Grierson, Bioorg. Med. Chem., 14, 3987 (2006); https://doi.org/10.1016/j.bmc.2005.12.060.
- M. Kitamatsu, A. Takahashi, T. Ohtsuki and M. Sisido, Tetrahedron, 66, 9659 (2010); https://doi.org/10.1016/j.tet.2010.10.056.
- M. Zhong and M. Robins, J. Org. Chem., 71, 8901 (2006); https://doi.org/10.1021/jo061759h.
- A. Thalassitis, A. Katsori, K. Dimas, D. Hadjipavlou-Litina, F. Pyleris, N. Sakellaridis and K. Litinas, J. Enzyme Inhib. Med. Chem., 29, 109 (2014); https://doi.org/10.3109/14756366.2012.755623.
- K. Kapadiya and R. Khunt, Lett. Drug Des. Discov., 16, 21 (2019); https://doi.org/10.2174/1570180815666180419151742.
- B. Brand, C. Reese, Q. Song and C. Visintin, Tetrahedron, 55, 5239 (1999); https://doi.org/10.1016/S0040-4020(99)00169-6.
- M. Zhong, I. Nowak and M. Robins, J. Org. Chem., 71, 7773 (2006); https://doi.org/10.1021/jo061282+.
- I. Koleva, T. Van Beek, J. Linssen, A. Groot and L.N. Evstatieva, Phytochem. Anal., 13, 8 (2002); https://doi.org/10.1002/pca.611.
References
A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross and M. Beller, Science, 297, 1676 (2002); https://doi.org/10.1126/science.1074801.
Y. Ju and R. Varma, Green Chem., 6, 219 (2004); https://doi.org/10.1039/b401620c.
J. Shah and K. Mohanraj, Indian J. Pharm. Sci., 76, 46 (2014).
M. Youssef and M. Amin, Molecules, 15, 8827 (2010); https://doi.org/10.3390/molecules15128827.
K.M. Venugopala, Asian J. Chem., 30, 684 (2018); https://doi.org/10.14233/ajchem.2018.21158.
R. Freer, G. Geen, T. Ramsay, A. Share, G. Slater and N. Smith, Tetrahedron, 56, 4589 (2000); https://doi.org/10.1016/S0040-4020(00)00373-2.
A. Lanver and H. Schmalz, Molecules, 10, 508 (2005); https://doi.org/10.3390/10020508.
K. Kapadiya, Y. Jadeja and R. Khunt, J. Heterocycl. Chem., 55, 199 (2018); https://doi.org/10.1002/jhet.3025.
H. Xu, R. Ye, S. Yang, R. Li and X. Yang, Chin. Chem. Lett., 25, 29 (2014); https://doi.org/10.1016/j.cclet.2013.10.011.
M. Paoli, S. Piccini, M. Rodriquez and A. Sega, J. Org. Chem., 69, 2881 (2004); https://doi.org/10.1021/jo035807z.
W. Parker, Chem. Rev., 109, 2880 (2009); https://doi.org/10.1021/cr900028p.
E. de Clercq, Nucleos. Nucleot. Nucl. Acids, 31, 339 (2012); https://doi.org/10.1080/15257770.2012.657383.
M. Legraverend and D. Grierson, Bioorg. Med. Chem., 14, 3987 (2006); https://doi.org/10.1016/j.bmc.2005.12.060.
M. Kitamatsu, A. Takahashi, T. Ohtsuki and M. Sisido, Tetrahedron, 66, 9659 (2010); https://doi.org/10.1016/j.tet.2010.10.056.
M. Zhong and M. Robins, J. Org. Chem., 71, 8901 (2006); https://doi.org/10.1021/jo061759h.
A. Thalassitis, A. Katsori, K. Dimas, D. Hadjipavlou-Litina, F. Pyleris, N. Sakellaridis and K. Litinas, J. Enzyme Inhib. Med. Chem., 29, 109 (2014); https://doi.org/10.3109/14756366.2012.755623.
K. Kapadiya and R. Khunt, Lett. Drug Des. Discov., 16, 21 (2019); https://doi.org/10.2174/1570180815666180419151742.
B. Brand, C. Reese, Q. Song and C. Visintin, Tetrahedron, 55, 5239 (1999); https://doi.org/10.1016/S0040-4020(99)00169-6.
M. Zhong, I. Nowak and M. Robins, J. Org. Chem., 71, 7773 (2006); https://doi.org/10.1021/jo061282+.
I. Koleva, T. Van Beek, J. Linssen, A. Groot and L.N. Evstatieva, Phytochem. Anal., 13, 8 (2002); https://doi.org/10.1002/pca.611.