Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of Fuel on Structure, Morphology, Magnetic Properties and Photocatalytic Activity of NiFe2O4 Nanoparticles
Corresponding Author(s) : Loan T.T. Nguyen
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
The present study attempted the synthesis of nickel ferrite (NiFe2O4) nanoparticles via solution combustion technique with urea as the fuel. The synthesized samples was structurally characterized by a series of different techniques including TGA/DSC, X-ray powder diffraction, energy dispersive X-ray, scanning electron microscope, transmission electronic microscopy, Brunauer-Emmett-Teller and Fourier transform infrared spectroscopy. A vibrating sample magnetometer (VSM) was also employed to investigate the magnetic properties of nickel ferrite at room temperature. The results showed that the crystallite size of the NiFe2O4 nanoparticles declined from 45.8 to 33.7 nm in response to elevated amount of urea in the precursor. The photocatalytic activity of NiFe2O4 nanoparticles was investigated by using rhodamine B dye under visible light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Godbole, N. Badera, S.B. Shrivastava, D. Jain, L.S.S. Chandra and V. Ganesan, Phys. Procedia, 49, 58 (2013); https://doi.org/10.1016/j.phpro.2013.10.011.
- Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun and Y. Cao, Mater. Res. Bull., 48, 2927 (2013); https://doi.org/10.1016/j.materresbull.2013.04.042.
- A. Sudhaik, P. Raizada, P. Shandilya and P. Singh, J. Environ. Chem. Eng., 6, 3874 (2018); https://doi.org/10.1016/j.jece.2018.05.039.
- R.S. Yadav, I. Kuøitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev and M. Hajdúchová, J. Phys. Chem. Solids, 107, 150 (2017); https://doi.org/10.1016/j.jpcs.2017.04.004.
- A.F.S. Abu-Hani, S.T. Mahmoud, F. Awwad and A.I. Ayesh, Sens. Actuators B Chem., 241, 1179 (2017); https://doi.org/10.1016/j.snb.2016.10.016.
- X. Tang, X. Hou, L. Yao, S. Hu, X. Liu and L. Xiang, Mater. Res. Bull., 57, 127 (2014); https://doi.org/10.1016/j.materresbull.2014.05.038.
- S. Joshi, M. Kumar, H. Pandey, M. Singh and P. Pal, J. Alloys Compd., 768, 287 (2018); https://doi.org/10.1016/j.jallcom.2018.07.250.
- A.M. Dumitrescu, P.M. Samoila, V. Nica, F. Doroftei, A.R. Iordan and M.N. Palamaru, Powder Technol., 243, 9 (2013); https://doi.org/10.1016/j.powtec.2013.03.033.
- T. Peng, X. Zhang, H. Lv and L. Zan, Catal. Commun., 28, 116 (2012); https://doi.org/10.1016/j.catcom.2012.08.031.
- M. Srivastava, S. Chaubey and A.K. Ojha, Mater. Chem. Phys., 118, 174 (2009); https://doi.org/10.1016/j.matchemphys.2009.07.023.
- E. Ranjith Kumar, R. Jayaprakash and S. Kumar, Mater. Sci. Semicond. Process., 17, 173 (2014); https://doi.org/10.1016/j.mssp.2013.09.003.
- A. Ahlawat, V.G. Sathe, V.R. Reddy and A. Gupta, J. Magn. Magn. Mater., 323, 2049 (2011); https://doi.org/10.1016/j.jmmm.2011.03.017.
- M. Kooti and A.N. Sedeh, J. Mater. Sci. Technol., 29, 34 (2013); https://doi.org/10.1016/j.jmst.2012.11.016.
- T. Lazarova, M. Georgieva, D. Tzankov, D. Voykova, L. Aleksandrov, Z. Cherkezova-Zheleva and D. Kovacheva, J. Alloys Compd., 700, 272 (2017); https://doi.org/10.1016/j.jallcom.2017.01.055.
- J. Azadmanjiri, S.A. Seyyed Ebrahimi and H.K. Salehani, Ceram. Int., 33, 1623 (2007); https://doi.org/10.1016/j.ceramint.2006.05.007.
- K. Shetty, L. Renuka, H.P. Nagaswarupa, H. Nagabhushana, K.S. Anantharaju, D. Rangappa, S.C. Prashantha and K. Ashwini, Mater. Today: Proc., 4, 11806 (2017); https://doi.org/10.1016/j.matpr.2017.09.098.
- J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla and S.S. Suryavanshi, Mater. Lett., 124, 144 (2014); https://doi.org/10.1016/j.matlet.2014.03.051.
- E. Ranjith Kumar, R. Jayaprakash and J. Chandrasekaran, Superlatt. Microstruct., 64, 343 (2013); https://doi.org/10.1016/j.spmi.2013.10.001.
- X. Guo, K. Wang, D. Li and J. Qin, Appl. Surf. Sci., 420, 792 (2017); https://doi.org/10.1016/j.apsusc.2017.05.178.
- P. Falak, S.A. Hassanzadeh-Tabrizi and A. Saffar-Teluri, J. Magn. Magn. Mater., 441, 98 (2017); https://doi.org/10.1016/j.jmmm.2017.05.044.
- A. Kalam, A.G. Al-Sehemi, M. Assiri, G. Du, T. Ahmad, I. Ahmad and M. Pannipara, Results in Physics, 8, 1046 (2018); https://doi.org/10.1016/j.rinp.2018.01.045.
- P.A. Vinosha, B. Xavier, A. Ashwini, L.A. Mely and S.J. Das, Optik, 137, 244 (2017); https://doi.org/10.1016/j.ijleo.2017.02.089.
- S.K. Rashmi, H.S.B. Naik, H. Jayadevappa, C.N. Sudhamani, S.B. Patil and M.M. Naik, J. Solid State Chem., 255, 178 (2017); https://doi.org/10.1016/j.jssc.2017.08.013.
References
B. Godbole, N. Badera, S.B. Shrivastava, D. Jain, L.S.S. Chandra and V. Ganesan, Phys. Procedia, 49, 58 (2013); https://doi.org/10.1016/j.phpro.2013.10.011.
Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun and Y. Cao, Mater. Res. Bull., 48, 2927 (2013); https://doi.org/10.1016/j.materresbull.2013.04.042.
A. Sudhaik, P. Raizada, P. Shandilya and P. Singh, J. Environ. Chem. Eng., 6, 3874 (2018); https://doi.org/10.1016/j.jece.2018.05.039.
R.S. Yadav, I. Kuøitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev and M. Hajdúchová, J. Phys. Chem. Solids, 107, 150 (2017); https://doi.org/10.1016/j.jpcs.2017.04.004.
A.F.S. Abu-Hani, S.T. Mahmoud, F. Awwad and A.I. Ayesh, Sens. Actuators B Chem., 241, 1179 (2017); https://doi.org/10.1016/j.snb.2016.10.016.
X. Tang, X. Hou, L. Yao, S. Hu, X. Liu and L. Xiang, Mater. Res. Bull., 57, 127 (2014); https://doi.org/10.1016/j.materresbull.2014.05.038.
S. Joshi, M. Kumar, H. Pandey, M. Singh and P. Pal, J. Alloys Compd., 768, 287 (2018); https://doi.org/10.1016/j.jallcom.2018.07.250.
A.M. Dumitrescu, P.M. Samoila, V. Nica, F. Doroftei, A.R. Iordan and M.N. Palamaru, Powder Technol., 243, 9 (2013); https://doi.org/10.1016/j.powtec.2013.03.033.
T. Peng, X. Zhang, H. Lv and L. Zan, Catal. Commun., 28, 116 (2012); https://doi.org/10.1016/j.catcom.2012.08.031.
M. Srivastava, S. Chaubey and A.K. Ojha, Mater. Chem. Phys., 118, 174 (2009); https://doi.org/10.1016/j.matchemphys.2009.07.023.
E. Ranjith Kumar, R. Jayaprakash and S. Kumar, Mater. Sci. Semicond. Process., 17, 173 (2014); https://doi.org/10.1016/j.mssp.2013.09.003.
A. Ahlawat, V.G. Sathe, V.R. Reddy and A. Gupta, J. Magn. Magn. Mater., 323, 2049 (2011); https://doi.org/10.1016/j.jmmm.2011.03.017.
M. Kooti and A.N. Sedeh, J. Mater. Sci. Technol., 29, 34 (2013); https://doi.org/10.1016/j.jmst.2012.11.016.
T. Lazarova, M. Georgieva, D. Tzankov, D. Voykova, L. Aleksandrov, Z. Cherkezova-Zheleva and D. Kovacheva, J. Alloys Compd., 700, 272 (2017); https://doi.org/10.1016/j.jallcom.2017.01.055.
J. Azadmanjiri, S.A. Seyyed Ebrahimi and H.K. Salehani, Ceram. Int., 33, 1623 (2007); https://doi.org/10.1016/j.ceramint.2006.05.007.
K. Shetty, L. Renuka, H.P. Nagaswarupa, H. Nagabhushana, K.S. Anantharaju, D. Rangappa, S.C. Prashantha and K. Ashwini, Mater. Today: Proc., 4, 11806 (2017); https://doi.org/10.1016/j.matpr.2017.09.098.
J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla and S.S. Suryavanshi, Mater. Lett., 124, 144 (2014); https://doi.org/10.1016/j.matlet.2014.03.051.
E. Ranjith Kumar, R. Jayaprakash and J. Chandrasekaran, Superlatt. Microstruct., 64, 343 (2013); https://doi.org/10.1016/j.spmi.2013.10.001.
X. Guo, K. Wang, D. Li and J. Qin, Appl. Surf. Sci., 420, 792 (2017); https://doi.org/10.1016/j.apsusc.2017.05.178.
P. Falak, S.A. Hassanzadeh-Tabrizi and A. Saffar-Teluri, J. Magn. Magn. Mater., 441, 98 (2017); https://doi.org/10.1016/j.jmmm.2017.05.044.
A. Kalam, A.G. Al-Sehemi, M. Assiri, G. Du, T. Ahmad, I. Ahmad and M. Pannipara, Results in Physics, 8, 1046 (2018); https://doi.org/10.1016/j.rinp.2018.01.045.
P.A. Vinosha, B. Xavier, A. Ashwini, L.A. Mely and S.J. Das, Optik, 137, 244 (2017); https://doi.org/10.1016/j.ijleo.2017.02.089.
S.K. Rashmi, H.S.B. Naik, H. Jayadevappa, C.N. Sudhamani, S.B. Patil and M.M. Naik, J. Solid State Chem., 255, 178 (2017); https://doi.org/10.1016/j.jssc.2017.08.013.