Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Enzymes in Synthesis of Biologically Important Organic Scaffolds: A Review
Corresponding Author(s) : Tejpal Singh Chundawat
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Green route of biogenic synthesis of heterocyclic compounds via microbes (bacteria, fungi, virus, yeast, algae, etc.) has the potential to deliver clean manufacturing technology. The application of biocatalysts for the synthesis of novel compounds has attracted increasing attention over the past few years and consequently, high demands have been placed on the identification of new biocatalysts for organic synthesis. Enzymes play an increasingly important role as biocatalysts in the synthesis of key intermediates for the pharmaceutical and chemical industry, and new enzymatic technologies. The characteristics of biocatalyst can be tailored with protein engineering and metabolic engineering methods to meet the desired process conditions. This review discusses the synthetic application of all the six classes of enzymes which are oxidoreductase, transferase, hydrolase, lyase, isomerase and ligase. Enzymes are highly selective catalysts and their contribution to regio-, chemo- and stereoselectivity of compounds were also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S/E. Milner and A.R. Maguire, ARKIVOC, 321 (2012); https://doi.org/10.3998/ark.5550190.0013.109.
- A.H. Mane, A.D. Patil, S.R. Kamat and R.S. Salunkhe, Chemistry Select, 3, 6454 (2018); https://doi.org/10.1002/slct.201800677.
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin and H. Wei, Chem. Soc. Rev., 48, 1004 (2019); https://doi.org/10.1039/C8CS00457A.
- V.S. Ferreira-Leitão, M.C. Cammarota, E.C. Gonçalves-Aguieiras, L.R.V. de Sá, R. Fernandez-Lafuente and D.M. Guimarães-Freire, Catalysts, 7, 9 (2017); https://doi.org/10.3390/catal7010009.
- R. Sheldon, eds.: P.J. Dunn, A.S. Wells and M.T. Williams, Introduction to Green Chemistry, Organic Synthesis and Pharmaceuticals, Green Chemistry in the Pharmaceutical Industry, WILEY-VCH Verlag GmbH & Co.: KGaA, Weinheim pp. 1-20 (2010).
- U.T. Bornscheuer and R.J. Kazlauskas, Introduction, Hydrolases in Organic SynthesisRegio- and Stereoselective Biotransformations, Wiley-VCH: Weinheim, Germany, edn 2 (2006).
- M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer and T. Zelinski, Angew. Chem. Int. Ed., 43, 788 (2004); https://doi.org/10.1002/anie.200300599.
- K. Buchholz, V. Kasche and U.T. Bornscheuer, Introduction to Enzyme Technology, Biocatalysts and Enzyme Technology, Wiley-VCH: New York, edn 2 (2012).
- A. Liese, K. Seelbach and C. Wandrey, Industrial Biotransformations, Wiley-VCH: Weinheim, Germany, edn 2, pp. 313-315 (2006).
- O. May, H. Gröger and K. Drauz, Enzyme Catalysis in Organic Synthesis, Wiley-VCH: Weinheim, Germany, edn 3 (2012).
- K. Faber, Biotransformations in Organic Chemistry, Springer: Heidelberg, Germany, edn 6 (2011).
- P. Anastas and N. Eghbali, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B.
- J. Tyler, R. Michael and H.Z. Simurdiak, ed.: S. Lee, Biocatalysis, In: Encyclopedia of Chemical Processing, University of Illinois, vol. 1, pp. 101-109 (2006).
- A. Stryjewska, K. Kiepura, T. Librowski and S. Lochyñski, Pharmacol. Rep., 65, 1102 (2013); https://doi.org/10.1016/S1734-1140(13)71468-3.
- K. Drauz, H. Greoger and O. May, Enzyme Catalysis in Organic Synthesis, Wiley-VCH: Weinheim (2012).
- J. Muschiol, C. Peters, N. Oberleitner, M.D. Mihovilovic, U.T. Bornscheuer and F. Rudroff, Chem. Commun. (Camb.), 51, 5798 (2015); https://doi.org/10.1039/C4CC08752F.
- E. Ricca, B. Brucher and J.N. Schrittwieser, Adv. Synth. Catal., 353, 2239 (2011); https://doi.org/10.1002/adsc.201100256.
- P.A. Santacoloma, G. Sin, K.V. Gernaey and J.M. Woodley, Org. Process Res. Dev., 15, 203 (2011); https://doi.org/10.1021/op1002159.
- U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore and K. Robins, Nature, 485, 185 (2012); https://doi.org/10.1038/nature11117.
- W.-W. Gao, F.-X. Zhang, G.-X. Zhang and C.-H. Zhou, Biochem. Eng. J., 99, 67 (2015); https://doi.org/10.1016/j.bej.2015.03.005.
- G.A. Applegate and D.B. Berkowitz, Adv. Synth. Catal., 357, 1619 (2015); https://doi.org/10.1002/adsc.201500316.
- Z. Guan, L.Y. Li and Y.H. He, RSC Adv., 5, 16801 (2015); https://doi.org/10.1039/C4RA11462K.
- S. Wallace and E.P. Balskus, Curr. Opin. Biotechnol., 30, 1 (2014); https://doi.org/10.1016/j.copbio.2014.03.006.
- C.D. Anobom, A.S. Pinheiro, R.A. De-Andrade, E.C. Aguieiras, G.C. Andrade, M.V. Moura, R.V. Almeida and D.M. Freire, BioMed Res. Int., 2014, 1 (2014); https://doi.org/10.1155/2014/684506.
- K. Fesko and M. GruberKhadjawi, ChemCatChem, 5, 1248 (2013); https://doi.org/10.1002/cctc.201200709.
- T. Matsuda, J. Biosci. Bioeng., 115, 233 (2013); https://doi.org/10.1016/j.jbiosc.2012.10.002.
- C.G. Marques Netto, D.J. Palmeira, P.B. Brondani and L.H. Andrade, Acad. Bras. Ciênc., 90(1 suppl 1), 943 (2018); https://doi.org/10.1590/0001-3765201820170741.
- P. Goswami, S.S.R. Chinnadayyala, M. Chakraborty, A.K. Kumar and A. Kakoti, Appl. Microbiol. Biotechnol., 97, 4259 (2013); https://doi.org/10.1007/s00253-013-4842-9.
- S.W. Chang and J.F. Shaw, N. Biotechnol., 26, 109 (2009); https://doi.org/10.1016/j.nbt.2009.07.003.
- U. Konietzny and R. Greiner, Int. J. Food Sci. Technol., 37, 791 (2002); https://doi.org/10.1046/j.1365-2621.2002.00617.x.
- H. Kohls, F. Steffen-Munsberg and M. Höhne, Curr. Opin. Chem. Biol., 19, 180 (2014); https://doi.org/10.1016/j.cbpa.2014.02.021.
- C.G. Boeriu, A.E. Frissen, E. Boer, K. van Kekem, D.-J. van Zoelen and I.F. Eggen, J. Mol. Catal., B Enzym., 66, 33 (2010); https://doi.org/10.1016/j.molcatb.2010.03.010.
- J. Albarrán-Velo, D. González-Martínez and V. Gotor-Fernández, Biocatal. Biotransform., 36, 102 (2018); https://doi.org/10.1080/10242422.2017.1340457.
- U.T. Bornscheuer, Phil. Trans. R. Soc. A., 376, 20170063 (2018); https://doi.org/10.1098/rsta.2017.0063.
- E. Lindbäck, S. Dawaigher and K. Wärnmark, Chem. Eur. J., 20, 13432 (2014); https://doi.org/10.1002/chem.201402548.
- G. Harald and A. Yasuhisa, eds.: K. Drauz, H. Groger and O. May, Principle of Enzyme Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, edn 3 (2012).
- N.J. Turner and E. O’Reilly, Nat. Chem. Biol., 9, 285 (2013); https://doi.org/10.1038/nchembio.1235.
- R. De Souza, L.S.M. Miranda and U.T. Bornscheuer, Chem. Eur. J., 23, 12040 (2017); https://doi.org/10.1002/chem.201702235.
- M. Hönig, P. Sondermann, N.J. Turner and E.M. Carreira, Angew. Chem. Int. Ed., 56, 8942 (2017); https://doi.org/10.1002/anie.201612462.
- U.T. Bornscheuer, Angew. Chem. Int. Ed., 55, 4372 (2016); https://doi.org/10.1002/anie.201510042.
- U.T. Bornscheuer, Nat. Chem. Biol., 12, 54 (2016); https://doi.org/10.1038/nchembio.1989.
- P.-Y. Colin, B. Kintses, F. Gielen, C.M. Miton, G. Fischer, M.F. Mohamed, M. Hyvönen, D.P. Morgavi, D.B. Janssen and F. Hollfelder, Nat. Commun., 6, 10008 (2015); https://doi.org/10.1038/ncomms10008.
- B. Chen, S. Lim, A. Kannan, S.C. Alford, F. Sunden, D. Herschlag, I.K. Dimov, T.M. Baer and J.R. Cochran, Nat. Chem. Biol., 12, 76 (2016); https://doi.org/10.1038/nchembio.1978.
- A. Alan, B. Mark, K. Mahn-Joo, S.S. Ethan, W. Herbert and M.W. George, Chem. Br., 23, 648 (1987).
- G. De Santis, Z. Zhu, W.A. Greenberg, K. Wong, J. Chaplin, S.R. Hanson, B. Farwell, L.W. Nicholson, C.L. Rand, D.P. Weiner, D. Robertson and M.J. Burk, J. Am. Chem. Soc., 124, 9024 (2002);https://doi.org/10.1021/ja0251120.
- D.H. Peterson and H.C. Murray, J. Am. Chem. Soc., 74, 1871 (1952); https://doi.org/10.1021/ja01127a531.
- D.H. Peterson, H.C. Murray, S.H. Eppstein, L.M. Reineke, A. Weintraub, P.D. Meister and H.M. Leigh, J. Am. Chem. Soc., 74, 5933 (1952); https://doi.org/10.1021/ja01143a033.
- J.T. Groves, G.E. Avarianeisser, K.M. Fish, M. Imachi and R.L. Kuczkowski, J. Am. Chem. Soc., 108, 3837 (1986); https://doi.org/10.1021/ja00273a053.
- E.G. Hrycay and S.M. Bandiera, Arch. Biochem. Biophys., 522, 71 (2012); https://doi.org/10.1016/j.abb.2012.01.003.
- Z.J. Wang, H. Renata, N.E. Peck, C.C. Farwell, P.S. Coelho and F.H. Arnold, Angew. Chem. Int. Ed., 53, 6810 (2014); https://doi.org/10.1002/anie.201402809.
- H. Renata, Z.J. Wang, R.Z. Kitto and F.H. Arnold, Catal. Sci. Technol., 4, 3640 (2014); https://doi.org/10.1039/C4CY00633J.
- J.A. Dietrich, Y. Yoshikuni, K.J. Fisher, F.X. Woolard, D. Ockey, D.J. McPhee, N.S. Renninger, M.C.Y. Chang, D. Baker and J.D. Keasling, ACS Chem. Biol., 4, 261 (2009); https://doi.org/10.1021/cb900006h.
- S. Peter, M. Kinne, R. Ullrich, G. Kayser and M. Hofrichter, Enzym. Microb. Technol., 52, 370 (2013); https://doi.org/10.1016/j.enzmictec.2013.02.013.
- A. Rottig and A. Steinbuchel, Microbiol. Mol. Biol. Rev., 77, 277 (2013); https://doi.org/10.1128/MMBR.00010-13.
- L. Horbal, Y. Rebets, M. Rabyk, R. Makitrynskyy, A. Luzhetskyy, V. Fedorenko and A. Bechthold, AMB Express, 2, 1 (2012); https://doi.org/10.1186/2191-0855-2-1.
- M. Sharma, N.N. Sharma and T.C. Bhalla, Enzyme Microb. Technol., 37, 279 (2005); https://doi.org/10.1016/j.enzmictec.2005.04.013.
- G.D. Benjamin and B. Viviane, Nat. Prod. Rep., 18, 618 (2001); https://doi.org/10.1039/b003667f.
- D. Leonte, L. Bencze, C. Paizs, M. Tosa, V. Zaharia and F. Irimie, Molecules, 21, 25 (2015); https://doi.org/10.3390/molecules21010025.
- K. Srirangan, V. Orr, L. Akawi, A. Westbrook, M. Moo-Young and C.P. Chou, Biotechnol. Adv., 31, 1319 (2013); https://doi.org/10.1016/j.biotechadv.2013.05.006.
- V. Orr, J. Scharer, M. Moo-Young, C.H. Honeyman, D. Fenner, L. Crossley, S.-Y. Suen and C.P. Chou, J. Biotechnol., 161, 19 (2012); https://doi.org/10.1016/j.jbiotec.2012.05.013.
- K. Oyama, K. Kihara and Y. Nonaka, J. Chem. Soc. Perkin. Trans. II, 356 (1981); https://doi.org/10.1039/p29810000356.
- M. Shadpour, R. Zahra and M. Ali, eds.: A. Mohammad and Inamuddin, Properties and Applications in Chemistry: Stability and Activity of Enzymes in Ionic Liquids, In: Green Solvents I: Properties and Appli-cations of Ionic Liquids, pp. 430-440 (2012).
- D. Chang, J. Interdisciplinary Undergraduate Res., 7, 1 (2015).
- M.L. Verma, G.S. Chauhan and S.S. Kanwar, Acta Microbiol. Immunol. Hung., 55, 327 (2008); https://doi.org/10.1556/AMicr.55.2008.3.4.
- M. Brovetto, D. Gamenara, P. Saenz Méndez and G.A. Seoane, Chem. Rev., 111, 4346 (2011); https://doi.org/10.1021/cr100299p.
- S.V. Pelt, Ph.D. Thesis, The Application of Nitrile Hydratases in Organic Synthesis, Gildeprint: Enschede, Netherlands (2010).
- A. Asuhisa, J. Biotechnol., 94, 65 (2000).
- U. Kragl, D. Gygax, O. Ghisalba and C. Wandrey, Angew. Chem. Int. Ed. Engl., 30, 827 (1991); https://doi.org/10.1002/anie.199108271.
- I. Maru, Y. Ohta, K. Murata and Y. Tsukada, Biol. Chem., 271, 16294 (1996); https://doi.org/10.1074/jbc.271.27.16294.
- I. Maru, J. Ohnishi, Y. Ohta and Y. Tsukada, Carbohydr. Res., 306, 575 (1998); https://doi.org/10.1016/S0008-6215(97)10106-9.
- B. Atkinson and F. Mavituna, Biochemical Engineering and Biotech-nology Handbook, Stockton Press: New York (1991).
- G. Schmidt-Kastner and P. Egerer, ed.: K. Kieslich, Amino Acids and Peptides, In: Biotechnology, Verlag Chemie: Weinheim, vol. 6a, pp. 387-419 (1984).
- A. Liese, K. Seelbach, A. Buchholz and J. Haberland, Processes in Industrial Biotransformations: Wiley- VCH: Weinheim (2006).
- E.L. Ayuk, U.C. Okoro and M.O. Ugwu, Int. J. Adv. Eng. Res. Appl., 2, 296 (2016).
References
S/E. Milner and A.R. Maguire, ARKIVOC, 321 (2012); https://doi.org/10.3998/ark.5550190.0013.109.
A.H. Mane, A.D. Patil, S.R. Kamat and R.S. Salunkhe, Chemistry Select, 3, 6454 (2018); https://doi.org/10.1002/slct.201800677.
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin and H. Wei, Chem. Soc. Rev., 48, 1004 (2019); https://doi.org/10.1039/C8CS00457A.
V.S. Ferreira-Leitão, M.C. Cammarota, E.C. Gonçalves-Aguieiras, L.R.V. de Sá, R. Fernandez-Lafuente and D.M. Guimarães-Freire, Catalysts, 7, 9 (2017); https://doi.org/10.3390/catal7010009.
R. Sheldon, eds.: P.J. Dunn, A.S. Wells and M.T. Williams, Introduction to Green Chemistry, Organic Synthesis and Pharmaceuticals, Green Chemistry in the Pharmaceutical Industry, WILEY-VCH Verlag GmbH & Co.: KGaA, Weinheim pp. 1-20 (2010).
U.T. Bornscheuer and R.J. Kazlauskas, Introduction, Hydrolases in Organic SynthesisRegio- and Stereoselective Biotransformations, Wiley-VCH: Weinheim, Germany, edn 2 (2006).
M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer and T. Zelinski, Angew. Chem. Int. Ed., 43, 788 (2004); https://doi.org/10.1002/anie.200300599.
K. Buchholz, V. Kasche and U.T. Bornscheuer, Introduction to Enzyme Technology, Biocatalysts and Enzyme Technology, Wiley-VCH: New York, edn 2 (2012).
A. Liese, K. Seelbach and C. Wandrey, Industrial Biotransformations, Wiley-VCH: Weinheim, Germany, edn 2, pp. 313-315 (2006).
O. May, H. Gröger and K. Drauz, Enzyme Catalysis in Organic Synthesis, Wiley-VCH: Weinheim, Germany, edn 3 (2012).
K. Faber, Biotransformations in Organic Chemistry, Springer: Heidelberg, Germany, edn 6 (2011).
P. Anastas and N. Eghbali, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B.
J. Tyler, R. Michael and H.Z. Simurdiak, ed.: S. Lee, Biocatalysis, In: Encyclopedia of Chemical Processing, University of Illinois, vol. 1, pp. 101-109 (2006).
A. Stryjewska, K. Kiepura, T. Librowski and S. Lochyñski, Pharmacol. Rep., 65, 1102 (2013); https://doi.org/10.1016/S1734-1140(13)71468-3.
K. Drauz, H. Greoger and O. May, Enzyme Catalysis in Organic Synthesis, Wiley-VCH: Weinheim (2012).
J. Muschiol, C. Peters, N. Oberleitner, M.D. Mihovilovic, U.T. Bornscheuer and F. Rudroff, Chem. Commun. (Camb.), 51, 5798 (2015); https://doi.org/10.1039/C4CC08752F.
E. Ricca, B. Brucher and J.N. Schrittwieser, Adv. Synth. Catal., 353, 2239 (2011); https://doi.org/10.1002/adsc.201100256.
P.A. Santacoloma, G. Sin, K.V. Gernaey and J.M. Woodley, Org. Process Res. Dev., 15, 203 (2011); https://doi.org/10.1021/op1002159.
U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore and K. Robins, Nature, 485, 185 (2012); https://doi.org/10.1038/nature11117.
W.-W. Gao, F.-X. Zhang, G.-X. Zhang and C.-H. Zhou, Biochem. Eng. J., 99, 67 (2015); https://doi.org/10.1016/j.bej.2015.03.005.
G.A. Applegate and D.B. Berkowitz, Adv. Synth. Catal., 357, 1619 (2015); https://doi.org/10.1002/adsc.201500316.
Z. Guan, L.Y. Li and Y.H. He, RSC Adv., 5, 16801 (2015); https://doi.org/10.1039/C4RA11462K.
S. Wallace and E.P. Balskus, Curr. Opin. Biotechnol., 30, 1 (2014); https://doi.org/10.1016/j.copbio.2014.03.006.
C.D. Anobom, A.S. Pinheiro, R.A. De-Andrade, E.C. Aguieiras, G.C. Andrade, M.V. Moura, R.V. Almeida and D.M. Freire, BioMed Res. Int., 2014, 1 (2014); https://doi.org/10.1155/2014/684506.
K. Fesko and M. GruberKhadjawi, ChemCatChem, 5, 1248 (2013); https://doi.org/10.1002/cctc.201200709.
T. Matsuda, J. Biosci. Bioeng., 115, 233 (2013); https://doi.org/10.1016/j.jbiosc.2012.10.002.
C.G. Marques Netto, D.J. Palmeira, P.B. Brondani and L.H. Andrade, Acad. Bras. Ciênc., 90(1 suppl 1), 943 (2018); https://doi.org/10.1590/0001-3765201820170741.
P. Goswami, S.S.R. Chinnadayyala, M. Chakraborty, A.K. Kumar and A. Kakoti, Appl. Microbiol. Biotechnol., 97, 4259 (2013); https://doi.org/10.1007/s00253-013-4842-9.
S.W. Chang and J.F. Shaw, N. Biotechnol., 26, 109 (2009); https://doi.org/10.1016/j.nbt.2009.07.003.
U. Konietzny and R. Greiner, Int. J. Food Sci. Technol., 37, 791 (2002); https://doi.org/10.1046/j.1365-2621.2002.00617.x.
H. Kohls, F. Steffen-Munsberg and M. Höhne, Curr. Opin. Chem. Biol., 19, 180 (2014); https://doi.org/10.1016/j.cbpa.2014.02.021.
C.G. Boeriu, A.E. Frissen, E. Boer, K. van Kekem, D.-J. van Zoelen and I.F. Eggen, J. Mol. Catal., B Enzym., 66, 33 (2010); https://doi.org/10.1016/j.molcatb.2010.03.010.
J. Albarrán-Velo, D. González-Martínez and V. Gotor-Fernández, Biocatal. Biotransform., 36, 102 (2018); https://doi.org/10.1080/10242422.2017.1340457.
U.T. Bornscheuer, Phil. Trans. R. Soc. A., 376, 20170063 (2018); https://doi.org/10.1098/rsta.2017.0063.
E. Lindbäck, S. Dawaigher and K. Wärnmark, Chem. Eur. J., 20, 13432 (2014); https://doi.org/10.1002/chem.201402548.
G. Harald and A. Yasuhisa, eds.: K. Drauz, H. Groger and O. May, Principle of Enzyme Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, edn 3 (2012).
N.J. Turner and E. O’Reilly, Nat. Chem. Biol., 9, 285 (2013); https://doi.org/10.1038/nchembio.1235.
R. De Souza, L.S.M. Miranda and U.T. Bornscheuer, Chem. Eur. J., 23, 12040 (2017); https://doi.org/10.1002/chem.201702235.
M. Hönig, P. Sondermann, N.J. Turner and E.M. Carreira, Angew. Chem. Int. Ed., 56, 8942 (2017); https://doi.org/10.1002/anie.201612462.
U.T. Bornscheuer, Angew. Chem. Int. Ed., 55, 4372 (2016); https://doi.org/10.1002/anie.201510042.
U.T. Bornscheuer, Nat. Chem. Biol., 12, 54 (2016); https://doi.org/10.1038/nchembio.1989.
P.-Y. Colin, B. Kintses, F. Gielen, C.M. Miton, G. Fischer, M.F. Mohamed, M. Hyvönen, D.P. Morgavi, D.B. Janssen and F. Hollfelder, Nat. Commun., 6, 10008 (2015); https://doi.org/10.1038/ncomms10008.
B. Chen, S. Lim, A. Kannan, S.C. Alford, F. Sunden, D. Herschlag, I.K. Dimov, T.M. Baer and J.R. Cochran, Nat. Chem. Biol., 12, 76 (2016); https://doi.org/10.1038/nchembio.1978.
A. Alan, B. Mark, K. Mahn-Joo, S.S. Ethan, W. Herbert and M.W. George, Chem. Br., 23, 648 (1987).
G. De Santis, Z. Zhu, W.A. Greenberg, K. Wong, J. Chaplin, S.R. Hanson, B. Farwell, L.W. Nicholson, C.L. Rand, D.P. Weiner, D. Robertson and M.J. Burk, J. Am. Chem. Soc., 124, 9024 (2002);https://doi.org/10.1021/ja0251120.
D.H. Peterson and H.C. Murray, J. Am. Chem. Soc., 74, 1871 (1952); https://doi.org/10.1021/ja01127a531.
D.H. Peterson, H.C. Murray, S.H. Eppstein, L.M. Reineke, A. Weintraub, P.D. Meister and H.M. Leigh, J. Am. Chem. Soc., 74, 5933 (1952); https://doi.org/10.1021/ja01143a033.
J.T. Groves, G.E. Avarianeisser, K.M. Fish, M. Imachi and R.L. Kuczkowski, J. Am. Chem. Soc., 108, 3837 (1986); https://doi.org/10.1021/ja00273a053.
E.G. Hrycay and S.M. Bandiera, Arch. Biochem. Biophys., 522, 71 (2012); https://doi.org/10.1016/j.abb.2012.01.003.
Z.J. Wang, H. Renata, N.E. Peck, C.C. Farwell, P.S. Coelho and F.H. Arnold, Angew. Chem. Int. Ed., 53, 6810 (2014); https://doi.org/10.1002/anie.201402809.
H. Renata, Z.J. Wang, R.Z. Kitto and F.H. Arnold, Catal. Sci. Technol., 4, 3640 (2014); https://doi.org/10.1039/C4CY00633J.
J.A. Dietrich, Y. Yoshikuni, K.J. Fisher, F.X. Woolard, D. Ockey, D.J. McPhee, N.S. Renninger, M.C.Y. Chang, D. Baker and J.D. Keasling, ACS Chem. Biol., 4, 261 (2009); https://doi.org/10.1021/cb900006h.
S. Peter, M. Kinne, R. Ullrich, G. Kayser and M. Hofrichter, Enzym. Microb. Technol., 52, 370 (2013); https://doi.org/10.1016/j.enzmictec.2013.02.013.
A. Rottig and A. Steinbuchel, Microbiol. Mol. Biol. Rev., 77, 277 (2013); https://doi.org/10.1128/MMBR.00010-13.
L. Horbal, Y. Rebets, M. Rabyk, R. Makitrynskyy, A. Luzhetskyy, V. Fedorenko and A. Bechthold, AMB Express, 2, 1 (2012); https://doi.org/10.1186/2191-0855-2-1.
M. Sharma, N.N. Sharma and T.C. Bhalla, Enzyme Microb. Technol., 37, 279 (2005); https://doi.org/10.1016/j.enzmictec.2005.04.013.
G.D. Benjamin and B. Viviane, Nat. Prod. Rep., 18, 618 (2001); https://doi.org/10.1039/b003667f.
D. Leonte, L. Bencze, C. Paizs, M. Tosa, V. Zaharia and F. Irimie, Molecules, 21, 25 (2015); https://doi.org/10.3390/molecules21010025.
K. Srirangan, V. Orr, L. Akawi, A. Westbrook, M. Moo-Young and C.P. Chou, Biotechnol. Adv., 31, 1319 (2013); https://doi.org/10.1016/j.biotechadv.2013.05.006.
V. Orr, J. Scharer, M. Moo-Young, C.H. Honeyman, D. Fenner, L. Crossley, S.-Y. Suen and C.P. Chou, J. Biotechnol., 161, 19 (2012); https://doi.org/10.1016/j.jbiotec.2012.05.013.
K. Oyama, K. Kihara and Y. Nonaka, J. Chem. Soc. Perkin. Trans. II, 356 (1981); https://doi.org/10.1039/p29810000356.
M. Shadpour, R. Zahra and M. Ali, eds.: A. Mohammad and Inamuddin, Properties and Applications in Chemistry: Stability and Activity of Enzymes in Ionic Liquids, In: Green Solvents I: Properties and Appli-cations of Ionic Liquids, pp. 430-440 (2012).
D. Chang, J. Interdisciplinary Undergraduate Res., 7, 1 (2015).
M.L. Verma, G.S. Chauhan and S.S. Kanwar, Acta Microbiol. Immunol. Hung., 55, 327 (2008); https://doi.org/10.1556/AMicr.55.2008.3.4.
M. Brovetto, D. Gamenara, P. Saenz Méndez and G.A. Seoane, Chem. Rev., 111, 4346 (2011); https://doi.org/10.1021/cr100299p.
S.V. Pelt, Ph.D. Thesis, The Application of Nitrile Hydratases in Organic Synthesis, Gildeprint: Enschede, Netherlands (2010).
A. Asuhisa, J. Biotechnol., 94, 65 (2000).
U. Kragl, D. Gygax, O. Ghisalba and C. Wandrey, Angew. Chem. Int. Ed. Engl., 30, 827 (1991); https://doi.org/10.1002/anie.199108271.
I. Maru, Y. Ohta, K. Murata and Y. Tsukada, Biol. Chem., 271, 16294 (1996); https://doi.org/10.1074/jbc.271.27.16294.
I. Maru, J. Ohnishi, Y. Ohta and Y. Tsukada, Carbohydr. Res., 306, 575 (1998); https://doi.org/10.1016/S0008-6215(97)10106-9.
B. Atkinson and F. Mavituna, Biochemical Engineering and Biotech-nology Handbook, Stockton Press: New York (1991).
G. Schmidt-Kastner and P. Egerer, ed.: K. Kieslich, Amino Acids and Peptides, In: Biotechnology, Verlag Chemie: Weinheim, vol. 6a, pp. 387-419 (1984).
A. Liese, K. Seelbach, A. Buchholz and J. Haberland, Processes in Industrial Biotransformations: Wiley- VCH: Weinheim (2006).
E.L. Ayuk, U.C. Okoro and M.O. Ugwu, Int. J. Adv. Eng. Res. Appl., 2, 296 (2016).