Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Cysteine-Capped CdSe Nanoparticles Using an Alternative of Selenium
Corresponding Author(s) : M.J. Moloto
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
Present work reports synthesis of L-cysteine capped CdSe nanoparticles at different temperatures via an aqueous medium, non-toxic and green colloidal route. Cadmium chloride (CdCl2·5H2O) and sodium selenite (Na2SeO3) were used as cadmium and selenium sources respectively. The prepared nanoparticles are characterized by UV-visible absorption and photoluminescence spectroscopy, Fourier transform infrared, X-ray diffraction and transmission electron microscopy. The XRD patterns confirm a cubic phase structure of the prepared nanoparticles at 55, 75 and 95 ºC, respectively. The TEM analysis, optical absorption and photoluminescence spectra shows epitaxial growth of CdSe nanoparticles as the temperature increases with average size diameter of 4.12 ± 0.32, 5.02 ± 0.234 and 5.53 ± 0.321 nm for 55, 75 and 95 ºC, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.K. Singh, P.A. Hassan and A. Kadam, Mater. Chem. Phys., 146, 136 (2014); https://doi.org/10.1016/j.matchemphys.2014.03.011.
- M.G. Bawendi, C.B. Murray and C.R. Kagan, Ann. Rev. Mater. Sci., 30, 545 (2000); https://doi.org/10.1146/annurev.matsci.30.1.545.
- N. Shukla and M.M. Nigra, Luminescence, 25, 14 (2010); https://doi.org/10.1002/bio.1134.
- T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Rädler, G. Natile and W.J. Parak, Nano Lett., 4, 703 (2004); https://doi.org/10.1021/nl035172j.
- D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss and A.P. Alivisatos, J. Phys. Chem. B, 105, 8861 (2001); https://doi.org/10.1021/jp0105488.
- E.O. Chukwuocha, M.C. Onyeaju and T.S.T. Harry, World J. Condens. Matter Phys., 2, 96 (2012); https://doi.org/10.4236/wjcmp.2012.22017.
- X. Liu, C. Ma, Y. Yan, G. Yao, Y. Tang, P. Huo, W. Shi and Y. Yan, Ind. Eng. Chem. Res., 52, 15015 (2013); https://doi.org/10.1021/ie4028395.
- A.L. Washington II and G.F. Strouse, J. Am. Chem. Soc., 130, 8916 (2008); https://doi.org/10.1021/ja711115r.
- M. Chu, X. Shen and G. Liu, Nanotechnology, 17, 444 (2006); https://doi.org/10.1088/0957-4484/17/2/017.
- A.J. Morris-Cohen, M. Malicki, M.D. Peterson, J.W.J. Slavin and E.A. Weiss, Chem. Mater., 25, 1155 (2013); https://doi.org/10.1021/cm302108j.
- Z. Deng, L. Cao, F. Tang and B. Zou, J. Phys. Chem. B, 109, 16671 (2005); https://doi.org/10.1021/jp052484x.
- W. Zhang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 6, 11066 (2012); https://doi.org/10.1021/nn304765k.
- M.R. Gaeeni, M. Tohidian and M. Majles-Ara, Ind. Eng. Chem. Res., 53, 7598 (2014); https://doi.org/10.1021/ie5004398.
- M. Ahmed, A. Guleria, M.C. Rath, A.K. Singh, S. Adhikari and S.K. Sarkar, J. Nanosci. Nanotechnol., 14, 5730 (2014); https://doi.org/10.1166/jnn.2014.8857.
- A. Singh, V.S. Tripathi, S. Neogy and M.C. Rath, Mater. Chem. Phys., 214, 320 (2018); https://doi.org/10.1016/j.matchemphys.2018.04.116.
References
M.K. Singh, P.A. Hassan and A. Kadam, Mater. Chem. Phys., 146, 136 (2014); https://doi.org/10.1016/j.matchemphys.2014.03.011.
M.G. Bawendi, C.B. Murray and C.R. Kagan, Ann. Rev. Mater. Sci., 30, 545 (2000); https://doi.org/10.1146/annurev.matsci.30.1.545.
N. Shukla and M.M. Nigra, Luminescence, 25, 14 (2010); https://doi.org/10.1002/bio.1134.
T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Rädler, G. Natile and W.J. Parak, Nano Lett., 4, 703 (2004); https://doi.org/10.1021/nl035172j.
D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss and A.P. Alivisatos, J. Phys. Chem. B, 105, 8861 (2001); https://doi.org/10.1021/jp0105488.
E.O. Chukwuocha, M.C. Onyeaju and T.S.T. Harry, World J. Condens. Matter Phys., 2, 96 (2012); https://doi.org/10.4236/wjcmp.2012.22017.
X. Liu, C. Ma, Y. Yan, G. Yao, Y. Tang, P. Huo, W. Shi and Y. Yan, Ind. Eng. Chem. Res., 52, 15015 (2013); https://doi.org/10.1021/ie4028395.
A.L. Washington II and G.F. Strouse, J. Am. Chem. Soc., 130, 8916 (2008); https://doi.org/10.1021/ja711115r.
M. Chu, X. Shen and G. Liu, Nanotechnology, 17, 444 (2006); https://doi.org/10.1088/0957-4484/17/2/017.
A.J. Morris-Cohen, M. Malicki, M.D. Peterson, J.W.J. Slavin and E.A. Weiss, Chem. Mater., 25, 1155 (2013); https://doi.org/10.1021/cm302108j.
Z. Deng, L. Cao, F. Tang and B. Zou, J. Phys. Chem. B, 109, 16671 (2005); https://doi.org/10.1021/jp052484x.
W. Zhang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 6, 11066 (2012); https://doi.org/10.1021/nn304765k.
M.R. Gaeeni, M. Tohidian and M. Majles-Ara, Ind. Eng. Chem. Res., 53, 7598 (2014); https://doi.org/10.1021/ie5004398.
M. Ahmed, A. Guleria, M.C. Rath, A.K. Singh, S. Adhikari and S.K. Sarkar, J. Nanosci. Nanotechnol., 14, 5730 (2014); https://doi.org/10.1166/jnn.2014.8857.
A. Singh, V.S. Tripathi, S. Neogy and M.C. Rath, Mater. Chem. Phys., 214, 320 (2018); https://doi.org/10.1016/j.matchemphys.2018.04.116.