Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Impact of Spherical Gold Nanoparticles from Phyllanthus emblica (Indian Gooseberry) Fruit Extract on the Photocatalytic Reduction of Methylene Blue Dye
Corresponding Author(s) : Belina Xavier
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
In present study, gold nanoparticles are synthesized using the aqueous fruit extract of Phyllanthus emblica (Indian gooseberry) via the green synthesis route. The biomolecules such as phenols, ascorbic acid, flavanols and tannins play an important role in the reduction of the metal ions as investigated by FT-IR studies. The UV-visible spectroscopy studies confirm the surface plasmon resonance peaks in the range of 532-550 nm and is characteristic of the colour change from pale yellow to pinkish-purple. The TEM analysis exhibits the spherical gold nanoparticles in the range of 10-50 nm. The zeta potential observed value is found to be -9.92 mV indicating a good stability and highly dependent on the shape and the interparticle interaction of metal nanoparticles in the medium. The particle size obtained by the dynamic light scattering method is in agreement with the TEM analysis. Gold nanoparticles act as a potential catalyst under mercury light illumination and shows 92.4 % degradation of methylene blue from the contaminated water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.P. Patil and G.D. Kim, Appl. Microbiol. Biotechnol., 101, 79 (2017); https://doi.org/10.1007/s00253-016-8012-8.
- A.K. Shukla and S. Iravani, Environ. Chem. Lett., 15, 223 (2017); https://doi.org/10.1007/s10311-017-0618-2.
- T.A. Dankovich, Environ. Sci. Nano, 1, 367 (2014); https://doi.org/10.1039/C4EN00067F.
- D. Bose and S. Chatterjee, Indian J. Microbiol., 55, 163 (2015); https://doi.org/10.1007/s12088-015-0512-1.
- H.M. Pinheiro, E. Touraud and O. Thomas, Dyes Pigments, 61, 121 (2004); https://doi.org/10.1016/j.dyepig.2003.10.009.
- A. Paz, J. Carballo, M.J. Pérez and J.M. Domínguez, Chemosphere, 181, 168 (2017); https://doi.org/10.1016/j.chemosphere.2017.04.046.
- X. Chen, Z. Wu, D. Liu and Z. Gao, Nanoscale Res. Lett., 12, 143 (2017); https://doi.org/10.1186/s11671-017-1904-4.
- S. Sarina, E.R. Waclawik and H. Zhu, Green Chem., 15, 1814 (2013); https://doi.org/10.1039/c3gc40450a.
- X. Ke, X. Zhang, J. Zhao, S. Sarina, J. Barry and H. Zhu, Green Chem., 15, 236 (2013); https://doi.org/10.1039/C2GC36542A.
- M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan and G. Annadurai, Bioinorg. Chem. Appl., 2014, Article ID 742346 (2014); https://doi.org/10.1155/2014/742346.
- J. Saha, A. Begum, A. Mukherjee and S. Kumar, Sustain. Environ. Res., 27, 245 (2017); https://doi.org/10.1016/j.serj.2017.04.003.
- K.B. Ayaz Ahmed, S. Subramanian, A. Sivasubramanian, G. Veerappan and A. Veerappan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 54 (2014); https://doi.org/10.1016/j.saa.2014.03.070.
- B. Paul, B. Bhuyan, D.D. Purkayastha, M. Dey and S.S. Dhar, Mater. Lett., 148, 37 (2015); https://doi.org/10.1016/j.matlet.2015.02.054.
- M. Guo, W. Li, F. Yang and H. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 142, 73 (2015); https://doi.org/10.1016/j.saa.2015.01.109.
- X. Liu, C. Cui, M. Zhao, J. Wang, W. Luo, B. Yang and Y. Jiang, Food Chem., 109, 909 (2008); https://doi.org/10.1016/j.foodchem.2008.01.071.
- Habib-ur-Rehman, K.A. Yasin, M.A. Choudhary, N. Khaliq, Atta-urRahman, M.I. Choudhary and S. Malik, Nat. Prod. Res., 21, 775 (2007); https://doi.org/10.1080/14786410601124664.
- P.S. Ramesh, T. Kokila and D. Geetha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 142, 339 (2015); https://doi.org/10.1016/j.saa.2015.01.062.
- T. Maruyama, Y. Fujimoto and T. Maekawa, J. Colloid Interface Sci., 447, 254 (2015); https://doi.org/10.1016/j.jcis.2014.12.046.
- S. Francis, S. Joseph, E.P. Koshy and B. Mathew, Environ. Sci. Pollut. Res. Int., 24, 17347 (2017); https://doi.org/10.1007/s11356-017-9329-2.
- B. Ankamwar, C. Damle, A. Ahmad and M. Sastry, J. Nanosci. Nanotechnol., 5, 1665 (2005); https://doi.org/10.1166/jnn.2005.184.
- P. Rajasekharreddy, P. Usha Rani and B. Sreedhar, J. Nanopart. Res., 12, 1711 (2010); https://doi.org/10.1007/s11051-010-9894-5.
- J.Y. Song, H.K. Jang and B.S. Kim, Process Biochem., 44, 1133 (2009); https://doi.org/10.1016/j.procbio.2009.06.005.
- B. Sharma, D.D. Purkayastha, S. Hazra, L. Gogoi, C.R. Bhattacharjee, N.N. Ghosh and J. Rout, Mater. Lett., 116, 94 (2014); https://doi.org/10.1016/j.matlet.2013.10.107.
- R. Mata, A. Bhaskaran and S.R. Sadras, Particuology, 24, 78 (2016); https://doi.org/10.1016/j.partic.2014.12.014.
- S. Baker and S. Satish, Spectrochim. Acta A Mol. Biomol. Spectrosc., 150, 691 (2015); https://doi.org/10.1016/j.saa.2015.05.080.
- V. Ahluwalia, J. Kumar, R. Sisodia, N.A. Shakil and S. Walia, Ind. Crops Prod., 55, 202 (2014); https://doi.org/10.1016/j.indcrop.2014.01.026.
- M. Ali, B. Kim, K. D. Belfield, D. Norman, M. Brennan and G.S. Ali, Mater. Sci. Eng. C, 58, 359 (2016); https://doi.org/10.1016/j.msec.2015.08.045.
- H. Han, D. Pan, X. Wu, Q. Zhang and H. Zhang, J. Mater. Sci., 49, 4796 (2014); https://doi.org/10.1007/s10853-014-8179-2.
- J. Das and P. Velusamy, J. Taiwan Inst. Chem. Eng., 45, 2280 (2014); https://doi.org/10.1016/j.jtice.2014.04.005.
References
M.P. Patil and G.D. Kim, Appl. Microbiol. Biotechnol., 101, 79 (2017); https://doi.org/10.1007/s00253-016-8012-8.
A.K. Shukla and S. Iravani, Environ. Chem. Lett., 15, 223 (2017); https://doi.org/10.1007/s10311-017-0618-2.
T.A. Dankovich, Environ. Sci. Nano, 1, 367 (2014); https://doi.org/10.1039/C4EN00067F.
D. Bose and S. Chatterjee, Indian J. Microbiol., 55, 163 (2015); https://doi.org/10.1007/s12088-015-0512-1.
H.M. Pinheiro, E. Touraud and O. Thomas, Dyes Pigments, 61, 121 (2004); https://doi.org/10.1016/j.dyepig.2003.10.009.
A. Paz, J. Carballo, M.J. Pérez and J.M. Domínguez, Chemosphere, 181, 168 (2017); https://doi.org/10.1016/j.chemosphere.2017.04.046.
X. Chen, Z. Wu, D. Liu and Z. Gao, Nanoscale Res. Lett., 12, 143 (2017); https://doi.org/10.1186/s11671-017-1904-4.
S. Sarina, E.R. Waclawik and H. Zhu, Green Chem., 15, 1814 (2013); https://doi.org/10.1039/c3gc40450a.
X. Ke, X. Zhang, J. Zhao, S. Sarina, J. Barry and H. Zhu, Green Chem., 15, 236 (2013); https://doi.org/10.1039/C2GC36542A.
M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan and G. Annadurai, Bioinorg. Chem. Appl., 2014, Article ID 742346 (2014); https://doi.org/10.1155/2014/742346.
J. Saha, A. Begum, A. Mukherjee and S. Kumar, Sustain. Environ. Res., 27, 245 (2017); https://doi.org/10.1016/j.serj.2017.04.003.
K.B. Ayaz Ahmed, S. Subramanian, A. Sivasubramanian, G. Veerappan and A. Veerappan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 54 (2014); https://doi.org/10.1016/j.saa.2014.03.070.
B. Paul, B. Bhuyan, D.D. Purkayastha, M. Dey and S.S. Dhar, Mater. Lett., 148, 37 (2015); https://doi.org/10.1016/j.matlet.2015.02.054.
M. Guo, W. Li, F. Yang and H. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 142, 73 (2015); https://doi.org/10.1016/j.saa.2015.01.109.
X. Liu, C. Cui, M. Zhao, J. Wang, W. Luo, B. Yang and Y. Jiang, Food Chem., 109, 909 (2008); https://doi.org/10.1016/j.foodchem.2008.01.071.
Habib-ur-Rehman, K.A. Yasin, M.A. Choudhary, N. Khaliq, Atta-urRahman, M.I. Choudhary and S. Malik, Nat. Prod. Res., 21, 775 (2007); https://doi.org/10.1080/14786410601124664.
P.S. Ramesh, T. Kokila and D. Geetha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 142, 339 (2015); https://doi.org/10.1016/j.saa.2015.01.062.
T. Maruyama, Y. Fujimoto and T. Maekawa, J. Colloid Interface Sci., 447, 254 (2015); https://doi.org/10.1016/j.jcis.2014.12.046.
S. Francis, S. Joseph, E.P. Koshy and B. Mathew, Environ. Sci. Pollut. Res. Int., 24, 17347 (2017); https://doi.org/10.1007/s11356-017-9329-2.
B. Ankamwar, C. Damle, A. Ahmad and M. Sastry, J. Nanosci. Nanotechnol., 5, 1665 (2005); https://doi.org/10.1166/jnn.2005.184.
P. Rajasekharreddy, P. Usha Rani and B. Sreedhar, J. Nanopart. Res., 12, 1711 (2010); https://doi.org/10.1007/s11051-010-9894-5.
J.Y. Song, H.K. Jang and B.S. Kim, Process Biochem., 44, 1133 (2009); https://doi.org/10.1016/j.procbio.2009.06.005.
B. Sharma, D.D. Purkayastha, S. Hazra, L. Gogoi, C.R. Bhattacharjee, N.N. Ghosh and J. Rout, Mater. Lett., 116, 94 (2014); https://doi.org/10.1016/j.matlet.2013.10.107.
R. Mata, A. Bhaskaran and S.R. Sadras, Particuology, 24, 78 (2016); https://doi.org/10.1016/j.partic.2014.12.014.
S. Baker and S. Satish, Spectrochim. Acta A Mol. Biomol. Spectrosc., 150, 691 (2015); https://doi.org/10.1016/j.saa.2015.05.080.
V. Ahluwalia, J. Kumar, R. Sisodia, N.A. Shakil and S. Walia, Ind. Crops Prod., 55, 202 (2014); https://doi.org/10.1016/j.indcrop.2014.01.026.
M. Ali, B. Kim, K. D. Belfield, D. Norman, M. Brennan and G.S. Ali, Mater. Sci. Eng. C, 58, 359 (2016); https://doi.org/10.1016/j.msec.2015.08.045.
H. Han, D. Pan, X. Wu, Q. Zhang and H. Zhang, J. Mater. Sci., 49, 4796 (2014); https://doi.org/10.1007/s10853-014-8179-2.
J. Das and P. Velusamy, J. Taiwan Inst. Chem. Eng., 45, 2280 (2014); https://doi.org/10.1016/j.jtice.2014.04.005.