Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation, Spectroscopic Characterization and Theoretical Studies of Transition Metal Complexes with 1-[(2-(1H-indol-3-yl)ethylimino)methyl]naphthalene-2-ol Ligand
Corresponding Author(s) : Abbas Ali Salih Al-Hamdani
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
A new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using HyperChem 8.0. These metal complexes exhibited good antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Bandoli, M. Nicolini, U. Mazzi and F.J. Refosco, J. Chem. Soc., Dalton Trans., 11, 2505 (1984); https://doi.org/10.1039/DT9840002505.
- K.J.C. van Bommel, W. Verboom, H. Kooijman, A.L. Spek and D.N. Reinhoudt, Inorg. Chem., 37, 4197 (1998); https://doi.org/10.1021/ic980125t.
- K.C. Gupta and A.K. Sutar, Coord. Chem. Rev., 252, 1420 (2008); https://doi.org/10.1016/j.ccr.2007.09.005.
- P. Mayer, K.C. Potgieter and T.I.A. Gerber, Polyhedron, 29, 1423 (2010); https://doi.org/10.1016/j.poly.2010.01.013.
- G.A. Lane, W.E. Geiger and N.G. Connelly, J. Am. Chem. Soc., 109, 402 (1987); https://doi.org/10.1021/ja00236a018.
- Y.G. Li, D.H. Shi, H.L. Zhu, H. Yan and S.W. Ng, Inorg. Chim. Acta, 360, 2881 (2007); https://doi.org/10.1016/j.ica.2007.02.019.
- S. Güveli and B. Ülküseven, Polyhedron, 30, 1385 (2011); https://doi.org/10.1016/j.poly.2011.02.041.
- S. Priyarega, P. Kalaivani, R. Prabhakaran, T. Hashimoto, A. Endo and K. Natarajan, J. Mol. Struct., 1002, 58 (2011); https://doi.org/10.1016/j.molstruc.2011.06.046.
- J.J. Fernandez, A. Fernandez, D. Vázquez-Garcia, M. López-Torres, A. Suárez, N. Gómez-Blanco and J.M. Vila, Eur. J. Inorg. Chem., 2007, 5408 (2007); https://doi.org/10.1002/ejic.200700478.
- W. Al-Zoubi, A.A.S. Al-Hamdani and Y.G. Ko, Sep. Sci. Technol., 52, 1052 (2017); https://doi.org/10.1080/01496395.2016.1267756.
- W.A. Zoubi, A.A.S. Al-Hamdani and Y.G. Ko, J. Chil. Chem. Soc., 60, 2774 (2015); https://doi.org/10.4067/S0717-97072015000100003.
- R.M. Sliverstien and X.F. Webser, Spctrometric Identification of Organic Compounds, John Wiley & Sons, Inc.: USA, edn 7 (2005).
- W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed and Y.G. Ko, Appl. Organomet. Chem., 32, e3895 (2018); https://doi.org/10.1002/aoc.3895.
- D.B. Cook, Handbook of Computational Quantum Chemistry, Oxford University Press: New York, p. 149 (1998).
- A.A.S. Al-Hamdani1, N.Kh.G. Al-Dulyme, S.D. Ahmed and H.M. Basheer, J. Al-Nahrain Univ. Sci., 20, 49 (2017)
- A.A.S. Al Hamdani and W. Al Zoubi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 75 (2015); https://doi.org/10.1016/j.saa.2014.07.057.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company: Amsterdam, London, edn 6, p. 121 (1968).
- S.A. Shaker, H.A. Mohammed and A.A.S. Al-Hamdani, Aus. J. Basic. App. Sci., 4, 5178 (2010).
- W. Al Zoubi, A.A.S. AlHamdani, I.P. Widiantara, R.G. Hamoodah and Y.G. Ko, J. Phys. Org. Chem., 30, 3707 (2017); https://doi.org/10.1002/poc.3707.
- A. Al-Hamdani, S. Ahmed, S. Shake and Z. Hasan, J. Baghdad Sci., 13, 105 (2016); https://doi.org/10.21123/bsj.2016.13.2.2NCC.00105.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Inter Science: New York (1997).
- R.M. Silverstein, G.C. Bassler and T.C. Movril, Spectroscopic Identification of Organic Compounds, Wiley: New York, edn 4 (1981).
- A.A.S. Al-Hamdani and G.H. Rehab, J. Baghdad Sci., 13, 770 (2016); https://doi.org/10.21123/bsj.13.4.770-781.
- W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed and Y.G. Ko, J. Phys. Org. Chem., 31, e3752 (2018); https://doi.org/10.1002/poc.3752.
- A.A.S. Al-Hamdani and Sh.A. Shaker, Orient. J. Chem., 27, 825 (2011).
- J.M. Andrews, J. Antimicrob. Chemother., 56, 60 (2005); https://doi.org/10.1093/jac/dki124.
References
G. Bandoli, M. Nicolini, U. Mazzi and F.J. Refosco, J. Chem. Soc., Dalton Trans., 11, 2505 (1984); https://doi.org/10.1039/DT9840002505.
K.J.C. van Bommel, W. Verboom, H. Kooijman, A.L. Spek and D.N. Reinhoudt, Inorg. Chem., 37, 4197 (1998); https://doi.org/10.1021/ic980125t.
K.C. Gupta and A.K. Sutar, Coord. Chem. Rev., 252, 1420 (2008); https://doi.org/10.1016/j.ccr.2007.09.005.
P. Mayer, K.C. Potgieter and T.I.A. Gerber, Polyhedron, 29, 1423 (2010); https://doi.org/10.1016/j.poly.2010.01.013.
G.A. Lane, W.E. Geiger and N.G. Connelly, J. Am. Chem. Soc., 109, 402 (1987); https://doi.org/10.1021/ja00236a018.
Y.G. Li, D.H. Shi, H.L. Zhu, H. Yan and S.W. Ng, Inorg. Chim. Acta, 360, 2881 (2007); https://doi.org/10.1016/j.ica.2007.02.019.
S. Güveli and B. Ülküseven, Polyhedron, 30, 1385 (2011); https://doi.org/10.1016/j.poly.2011.02.041.
S. Priyarega, P. Kalaivani, R. Prabhakaran, T. Hashimoto, A. Endo and K. Natarajan, J. Mol. Struct., 1002, 58 (2011); https://doi.org/10.1016/j.molstruc.2011.06.046.
J.J. Fernandez, A. Fernandez, D. Vázquez-Garcia, M. López-Torres, A. Suárez, N. Gómez-Blanco and J.M. Vila, Eur. J. Inorg. Chem., 2007, 5408 (2007); https://doi.org/10.1002/ejic.200700478.
W. Al-Zoubi, A.A.S. Al-Hamdani and Y.G. Ko, Sep. Sci. Technol., 52, 1052 (2017); https://doi.org/10.1080/01496395.2016.1267756.
W.A. Zoubi, A.A.S. Al-Hamdani and Y.G. Ko, J. Chil. Chem. Soc., 60, 2774 (2015); https://doi.org/10.4067/S0717-97072015000100003.
R.M. Sliverstien and X.F. Webser, Spctrometric Identification of Organic Compounds, John Wiley & Sons, Inc.: USA, edn 7 (2005).
W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed and Y.G. Ko, Appl. Organomet. Chem., 32, e3895 (2018); https://doi.org/10.1002/aoc.3895.
D.B. Cook, Handbook of Computational Quantum Chemistry, Oxford University Press: New York, p. 149 (1998).
A.A.S. Al-Hamdani1, N.Kh.G. Al-Dulyme, S.D. Ahmed and H.M. Basheer, J. Al-Nahrain Univ. Sci., 20, 49 (2017)
A.A.S. Al Hamdani and W. Al Zoubi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 75 (2015); https://doi.org/10.1016/j.saa.2014.07.057.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company: Amsterdam, London, edn 6, p. 121 (1968).
S.A. Shaker, H.A. Mohammed and A.A.S. Al-Hamdani, Aus. J. Basic. App. Sci., 4, 5178 (2010).
W. Al Zoubi, A.A.S. AlHamdani, I.P. Widiantara, R.G. Hamoodah and Y.G. Ko, J. Phys. Org. Chem., 30, 3707 (2017); https://doi.org/10.1002/poc.3707.
A. Al-Hamdani, S. Ahmed, S. Shake and Z. Hasan, J. Baghdad Sci., 13, 105 (2016); https://doi.org/10.21123/bsj.2016.13.2.2NCC.00105.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Inter Science: New York (1997).
R.M. Silverstein, G.C. Bassler and T.C. Movril, Spectroscopic Identification of Organic Compounds, Wiley: New York, edn 4 (1981).
A.A.S. Al-Hamdani and G.H. Rehab, J. Baghdad Sci., 13, 770 (2016); https://doi.org/10.21123/bsj.13.4.770-781.
W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed and Y.G. Ko, J. Phys. Org. Chem., 31, e3752 (2018); https://doi.org/10.1002/poc.3752.
A.A.S. Al-Hamdani and Sh.A. Shaker, Orient. J. Chem., 27, 825 (2011).
J.M. Andrews, J. Antimicrob. Chemother., 56, 60 (2005); https://doi.org/10.1093/jac/dki124.