Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Efficient Catalytic Performance of Calcined Tungstophosphoric Acid for the Claisen-Schmidt Condensation under Solvent-Free Reaction
Corresponding Author(s) : Abdulrahman I. Alharthi
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
Effect of calcination of tungstophosphoric acid catalyst was evaluated in terms of the synthesis of chalcone derivatives via Claisen-Schmidt condensation using the reaction of acetophenone and several substituted aldehydes. The catalyst was characterized before and after calcination by FT-IR to assess the effectiveness of the synthesis of the desired products. The calcined tungstophosphoric acid catalyst (HPW-CL) showed a better performance and high yield of Claisen-Schmidt products in a short period of time. It was also found out that the calcined tungstophosphoric acid provides a chemo selective, efficient and environmentally benign synthesis of chalcone in an excellent yield in a solvent-free system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Dabiri and S. Bashiribod, Molecules, 14, 1126 (2009); https://doi.org/10.3390/molecules14031126.
- J.H. Clark, Acc. Chem. Res., 35, 791 (2002); https://doi.org/10.1021/ar010072a.
- J.K. Rajput and G. Kaur, Tetrahedron Lett., 53, 646 (2012); https://doi.org/10.1016/j.tetlet.2011.11.109.
- H. Qian, D. Liu and C. Lv, Ind. Eng. Chem. Res., 50, 1146 (2011); https://doi.org/10.1021/ie101790k.
- J. Li, J. Feng, M. Li, Q. Wang, Y. Su and Z. Jia, Solid State Sci., 21, 1 (2013); https://doi.org/10.1016/j.solidstatesciences.2013.04.005.
- I.V. Kozhevnikov, Chem. Rev., 98, 171 (1998); https://doi.org/10.1021/cr960400y.
- L.P. Kazanskii and M.A. Fedotov, ed.: D.B. Brown, Mixed-Valence Compounds: Theory and Applications in Chemistry, Physics, Geology, and Biology, Springer Science & Business Media, England, vol. 58, p. 383 (2012).
- W. Klemperer and W. Shum, J. Am. Chem. Soc., 99, 3544 (1977); https://doi.org/10.1021/ja00452a080.
- W. Klemperer and W. Shum, J. Am. Chem. Soc., 100, 4891 (1978); https://doi.org/10.1021/ja00483a044.
- T. Okuhara, N. Mizuno and M. Misono, Catalytic Chemistry of Heteropoly Compounds, In: Advances in Catalysis, Elsevier, vol. 41, pp. 113- 252 (1996).
- A. Corma, Chem. Rev., 95, 559 (1995); https://doi.org/10.1021/cr00035a006.
- D. Friesen and D. Gibson, Chem. Commun., 5, 543 (1998); https://doi.org/10.1039/a800381e.
- M. Misono and N. Nojiri, Appl. Catal., 64, 1 (1990); https://doi.org/10.1016/S0166-9834(00)81550-X.
- H. Firouzabadi and A. Jafari, J. Iran. Chem. Soc., 2, 85 (2005).
- I.V. Kozhevnikov, Russ. Chem. Rev., 56, 811 (1987); https://doi.org/10.1070/RC1987v056n09ABEH003304.
- M. Misono, Catal. Rev., Sci. Eng., 29, 269 (1987); https://doi.org/10.1080/01614948708078072.
- M. Timofeeva, A. Demidov, A. Davydov and I. Kozhevnikov, J. Mol. Catal., 79, 21 (1993); https://doi.org/10.1016/0304-5102(93)85087-A.
- V. Chuvaev, K. Popov and V. Spitsyn, Dokl. Akad. Nauk SSSR, 255, 892 (1980).
- G.A. Olah, G.K.S. Prakash and J. Sommer, Superacids, John Wiley & Sons: New York, Chichester, Brisbane, Toronto, Singapore, pp. 1073-1074 (1985).
- K. Nowiñska, R. Fiedorow and J. Adamiec, J. Chem. Soc., Faraday Trans., 87, 749 (1991); https://doi.org/10.1039/FT9918700749.
- T. Okuhara, T. Nishimura, H. Watanabe and M. Misono, J. Mol. Catal., 74, 247 (1992); https://doi.org/10.1016/0304-5102(92)80242-9.
- A. Alcantara, J.M. Marinas and J. Sinisterra, Tetrahedron Lett., 28, 1515 (1987); https://doi.org/10.1016/S0040-4039(01)81030-3.
- Y. Xia, Z.Y. Yang, P. Xia, K.F. Bastow, Y. Nakanishi and K.H. Lee, Bioorg. Med. Chem. Lett., 10, 699 (2000); https://doi.org/10.1016/S0960-894X(00)00072-X.
- H.K. Hsieh, L.T. Tsao, J.P. Wang and C.N. Lin, J. Pharm. Pharmacol., 52, 163 (2000); https://doi.org/10.1211/0022357001773814.
- N. Yadav, S.K. Dixit, A. Bhattacharya, L.C. Mishra, M. Sharma, S.K. Awasthi and V.K. Bhasin, Chem. Biol. Drug Des., 80, 340 (2012); https://doi.org/10.1111/j.1747-0285.2012.01383.x.
- M.N. Gomes, R.C. Braga, E.M. Grzelak, B.J. Neves, E. Muratov, R. Ma, L.L. Klein, S. Cho, G.R. Oliveira, S.G. Franzblau and C.H. Andrade, Eur. J. Med. Chem., 137, 126 (2017); https://doi.org/10.1016/j.ejmech.2017.05.026.
- N.J. Lawrence, D. Rennison, A.T. McGown, S. Ducki, L.A. Gul, J.A. Hadfield and N. Khan, J. Comb. Chem., 3, 421 (2001); https://doi.org/10.1021/cc000075z.
- X. Bu, L. Zhao and Y. Li, Synthesis, 1246 (1997); https://doi.org/10.1055/s-1997-1348.
- S. Bhagat, R. Sharma, D.M. Sawant, L. Sharma and A.K. Chakraborti, J. Mol. Catal. A Chem., 244, 20 (2006); https://doi.org/10.1016/j.molcata.2005.08.039.
- T. Narender, K.P. Reddy, Shweta, K. Srivastava, D.K. Mishra and S.K. Puri, Org. Lett., 9, 5369 (2007); https://doi.org/10.1021/ol702187m.
- T. Szell and I. Sohar, Can. J. Chem., 47, 1254 (1969); https://doi.org/10.1139/v69-207.
- L.J. Mazza and A. Guarna, Synthesis, 41 (1980); https://doi.org/10.1055/s-1980-28916.
- T. Narender and K.P. Reddy, Tetrahedron Lett., 48, 3177 (2007); https://doi.org/10.1016/j.tetlet.2007.03.054.
- Q. Xu, Z. Yang, D. Yin and F. Zhang, Catal. Commun., 9, 1579 (2008); https://doi.org/10.1016/j.catcom.2008.01.007.
References
M. Dabiri and S. Bashiribod, Molecules, 14, 1126 (2009); https://doi.org/10.3390/molecules14031126.
J.H. Clark, Acc. Chem. Res., 35, 791 (2002); https://doi.org/10.1021/ar010072a.
J.K. Rajput and G. Kaur, Tetrahedron Lett., 53, 646 (2012); https://doi.org/10.1016/j.tetlet.2011.11.109.
H. Qian, D. Liu and C. Lv, Ind. Eng. Chem. Res., 50, 1146 (2011); https://doi.org/10.1021/ie101790k.
J. Li, J. Feng, M. Li, Q. Wang, Y. Su and Z. Jia, Solid State Sci., 21, 1 (2013); https://doi.org/10.1016/j.solidstatesciences.2013.04.005.
I.V. Kozhevnikov, Chem. Rev., 98, 171 (1998); https://doi.org/10.1021/cr960400y.
L.P. Kazanskii and M.A. Fedotov, ed.: D.B. Brown, Mixed-Valence Compounds: Theory and Applications in Chemistry, Physics, Geology, and Biology, Springer Science & Business Media, England, vol. 58, p. 383 (2012).
W. Klemperer and W. Shum, J. Am. Chem. Soc., 99, 3544 (1977); https://doi.org/10.1021/ja00452a080.
W. Klemperer and W. Shum, J. Am. Chem. Soc., 100, 4891 (1978); https://doi.org/10.1021/ja00483a044.
T. Okuhara, N. Mizuno and M. Misono, Catalytic Chemistry of Heteropoly Compounds, In: Advances in Catalysis, Elsevier, vol. 41, pp. 113- 252 (1996).
A. Corma, Chem. Rev., 95, 559 (1995); https://doi.org/10.1021/cr00035a006.
D. Friesen and D. Gibson, Chem. Commun., 5, 543 (1998); https://doi.org/10.1039/a800381e.
M. Misono and N. Nojiri, Appl. Catal., 64, 1 (1990); https://doi.org/10.1016/S0166-9834(00)81550-X.
H. Firouzabadi and A. Jafari, J. Iran. Chem. Soc., 2, 85 (2005).
I.V. Kozhevnikov, Russ. Chem. Rev., 56, 811 (1987); https://doi.org/10.1070/RC1987v056n09ABEH003304.
M. Misono, Catal. Rev., Sci. Eng., 29, 269 (1987); https://doi.org/10.1080/01614948708078072.
M. Timofeeva, A. Demidov, A. Davydov and I. Kozhevnikov, J. Mol. Catal., 79, 21 (1993); https://doi.org/10.1016/0304-5102(93)85087-A.
V. Chuvaev, K. Popov and V. Spitsyn, Dokl. Akad. Nauk SSSR, 255, 892 (1980).
G.A. Olah, G.K.S. Prakash and J. Sommer, Superacids, John Wiley & Sons: New York, Chichester, Brisbane, Toronto, Singapore, pp. 1073-1074 (1985).
K. Nowiñska, R. Fiedorow and J. Adamiec, J. Chem. Soc., Faraday Trans., 87, 749 (1991); https://doi.org/10.1039/FT9918700749.
T. Okuhara, T. Nishimura, H. Watanabe and M. Misono, J. Mol. Catal., 74, 247 (1992); https://doi.org/10.1016/0304-5102(92)80242-9.
A. Alcantara, J.M. Marinas and J. Sinisterra, Tetrahedron Lett., 28, 1515 (1987); https://doi.org/10.1016/S0040-4039(01)81030-3.
Y. Xia, Z.Y. Yang, P. Xia, K.F. Bastow, Y. Nakanishi and K.H. Lee, Bioorg. Med. Chem. Lett., 10, 699 (2000); https://doi.org/10.1016/S0960-894X(00)00072-X.
H.K. Hsieh, L.T. Tsao, J.P. Wang and C.N. Lin, J. Pharm. Pharmacol., 52, 163 (2000); https://doi.org/10.1211/0022357001773814.
N. Yadav, S.K. Dixit, A. Bhattacharya, L.C. Mishra, M. Sharma, S.K. Awasthi and V.K. Bhasin, Chem. Biol. Drug Des., 80, 340 (2012); https://doi.org/10.1111/j.1747-0285.2012.01383.x.
M.N. Gomes, R.C. Braga, E.M. Grzelak, B.J. Neves, E. Muratov, R. Ma, L.L. Klein, S. Cho, G.R. Oliveira, S.G. Franzblau and C.H. Andrade, Eur. J. Med. Chem., 137, 126 (2017); https://doi.org/10.1016/j.ejmech.2017.05.026.
N.J. Lawrence, D. Rennison, A.T. McGown, S. Ducki, L.A. Gul, J.A. Hadfield and N. Khan, J. Comb. Chem., 3, 421 (2001); https://doi.org/10.1021/cc000075z.
X. Bu, L. Zhao and Y. Li, Synthesis, 1246 (1997); https://doi.org/10.1055/s-1997-1348.
S. Bhagat, R. Sharma, D.M. Sawant, L. Sharma and A.K. Chakraborti, J. Mol. Catal. A Chem., 244, 20 (2006); https://doi.org/10.1016/j.molcata.2005.08.039.
T. Narender, K.P. Reddy, Shweta, K. Srivastava, D.K. Mishra and S.K. Puri, Org. Lett., 9, 5369 (2007); https://doi.org/10.1021/ol702187m.
T. Szell and I. Sohar, Can. J. Chem., 47, 1254 (1969); https://doi.org/10.1139/v69-207.
L.J. Mazza and A. Guarna, Synthesis, 41 (1980); https://doi.org/10.1055/s-1980-28916.
T. Narender and K.P. Reddy, Tetrahedron Lett., 48, 3177 (2007); https://doi.org/10.1016/j.tetlet.2007.03.054.
Q. Xu, Z. Yang, D. Yin and F. Zhang, Catal. Commun., 9, 1579 (2008); https://doi.org/10.1016/j.catcom.2008.01.007.