Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cu(I) Catalyzed Coumarin-1,2,3-Triazole Hybrids: Click Chemistry
Corresponding Author(s) : Ritu Mamgain
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
A series of novel coumarin-1,2,3-triazole derivatives were synthesized in good yield via click chemistry using Cu(I) catalyzed intermolecular Huisgen [3+2] cycloaddition reaction. All the synthesized compounds were characterized spectroscopically. This piece of work could be helpful to develop biologically relevant coumarin analogs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Egan, R.O. Kennedy, E. Moran, D. Cox, E. Prosser and D. Thornes, Drug Metab. Rev., 22, 503 (1990); https://doi.org/10.3109/03602539008991449.
- W.F. Hodnick, C. Bohmont, C. Capps and R. Pardini, Biochem. Pharmacol., 36, 2873 (1987); https://doi.org/10.1016/0006-2952(87)90282-6.
- C. Bucolo, A. Maltese, F. Maugeri, K.W. Ward, M. Baiula, A. Sparta and S. Spampinato, J. Pharma Pharmacol., 60, 1473 (2008); https://doi.org/10.1211/jpp.60.11.0008.
- D. Hadjipavlou-Litina, C. Kontogiorgis, E. Pontiki, M. Dakanali, A. Akoumianaki and H.E. Katerinopoulos, J. Enzyme Inhib. Med. Chem., 22, 287 (2007); https://doi.org/10.1080/14756360601073914.
- D. Zavrsnik, S. Muratovic, S. Spirtovic, D. Softic and M. Medic-Saric, Bosn. J. Basic Med. Sci., 8, 277, (2008); https://doi.org/10.17305/bjbms.2008.2933.
- M.A. Musa, J.S. Cooperwoods and M.O. Khan, Curr. Med. Chem., 15, 2664 (2008); https://doi.org/10.2174/092986708786242877.
- T. Yoshimoto, M. Furukawa, S. Yamamoto, T. Horie and W. Kohno, Biochem. Biophys. Res. Commun. 116, 612 (1983); https://doi.org/10.1016/0006-291X(83)90568-5.
- H. Hoeksema, J.L. Johnson and J.W. Hinman, J. Am. Chem. Soc., 77, 6710 (1955); https://doi.org/10.1021/ja01629a129.
- U. Galm, S. Heller, S. Shapiro, M. Page, S.M. Li and M. Heide, Antimicrob. Agents Chemoth., 48, 1307 (2004); https://doi.org/10.1128/AAC.48.4.1307-1312.2004.
- A. Maxwell, Trends Microbiol., 5, 102, (1997); https://doi.org/10.1016/S0966-842X(96)10085-8.
- A. Maxwell and D. M. Lawson, Curr. Top. Med. Chem., 3, 283 (2003); https://doi.org/10.2174/1568026033452500.
- J.A. Burlison, C. Avila, G. Viehauer, D.J. Lubbers, J. Holzbeierlein and B.S. Blagg, J. Org. Chem., 73, 2130 (2008); https://doi.org/10.1021/jo702191a.
- Y.L. Chen, T.C. Wang, C.C. Tzeng and N.C. Chang, Helv. Chim. Acta, 82, 191 (1999); https://doi.org/10.1002/(SICI)1522-2675(19990210)82:2<191::AIDHLCA191>3.0.CO;2-P.
- C. Bocca, L. Gabriel and A. Miglietta, Chem.-Biol. Interactions, 137, 285 (2001); https://doi.org/10.1016/S0009-2797(01)00261-7.
- M. Pirmohamed, Br. J. Clin. Pharmacol., 62, 509 (2006); https://doi.org/10.1111/j.1365-2125.2006.02806.x.
- S. Thaisrivongs, D.L. Romero, R.A. Tommasi, M.N. Janakiraman, J.W. Strohbach, S.R. Turner, C. Biles, R.R. Morge, P.D. Johnson, P.A. Aristoff, P.K. Tomich, J.C. Lynn, M.M. Horng, K.T. Chong, R.R. Hinshaw, W.J. Howe, B.C. Finzel and K.D. Watenpaugh, J. Med. Chem., 39, 4630 (1996); https://doi.org/10.1021/jm960228q.
- R. Alvarez, S. Velazquez, A.S. Felix, S. Aquaro, E.D. Clercq, C.F. Perno, A. Karlsson, J. Balzarini and M.J. Camarasa, J. Med. Chem., 37, 4185 (1994); https://doi.org/10.1021/jm00050a015.
- S. Velázquez, R. Alvarez, C. Pérez, F. Gago, E. De Clercq, J. Balzarini and M.-J. Camarasa, Antivir. Chem. Chemother., 9, 481 (1998); https://doi.org/10.1177/095632029800900604.
- M.J. Genin, D.A. Allwine, D.J. Anderson, M.R. Barbachyn, D.E. Emmert, S.A. Garmon, D.R. Graber, K.C. Grega, J.B. Hester, D.K. Hutchinson, J. Morris, R.J. Reischer, C.W. Ford, G.E. Zurenko, J.C. Hamel, R.D. Schaadt, D. Stapert and B.H. Yagi, J. Med. Chem., 43, 953 (2000); https://doi.org/10.1021/jm990373e.
- L.L. Brockunier, E.R. Parmee, H.O. Ok, M.R. Candelore, M.A. Cascieri, L.F. Colwell Jr, L. Deng, W.P. Feeney, M.J. Forrest, G.J. Hom, D.E. MacIntyre, L. Tota, M.J. Wyvratt, M.H. Fisher and A.E. Weber, Bioorg. Med. Chem. Lett., 10, 2111 (2000); https://doi.org/10.1016/S0960-894X(00)00422-4.
- D.P. Levine, Clin. Infect. Dis. 42, 5 (2006); https://doi.org/10.1086/491709.
- M.V.N. de. Souza, Expert Opin. Ther. Patents, 18, 1101 (2008); https://doi.org/10.1517/13543776.18.9.1101.
- X. Fu, C. Albermann, C. Zhang and J.S. Thorson, Org. Lett., 7, 1513 (2005); https://doi.org/10.1021/ol0501626.
- Y. Shi and C.H. Zhou, Bioorg. Med. Chem. Lett., 21, 956 (2011); https://doi.org/10.1016/j.bmcl.2010.12.059.
- P. López-Rojas, M. Janeczko, K. Kubiñski, A. Amesty, M. Maslyk and A. Estévez-Braun, Molecules, 23, 199 (2018); https://doi.org/10.3390/molecules23010199.
- C.W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 67, 3057 (2002); https://doi.org/10.1021/jo011148j.
- V.V. Rostovtsev, L.G. Green, V.V. Fokin and K.B. Sharpless, Angew. Chem. Int. Ed., 41, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AIDANIE2596>3.0.CO;2-4.
- H. Singh, J.V. Singh, M.K. Gupta, A.K. Saxena, S. Sharma, K. Nepali and P.M.S. Bedi, Bioorg. Med. Chem. Lett., 27, 3974 (2017); https://doi.org/10.1016/j.bmcl.2017.07.069.
References
D. Egan, R.O. Kennedy, E. Moran, D. Cox, E. Prosser and D. Thornes, Drug Metab. Rev., 22, 503 (1990); https://doi.org/10.3109/03602539008991449.
W.F. Hodnick, C. Bohmont, C. Capps and R. Pardini, Biochem. Pharmacol., 36, 2873 (1987); https://doi.org/10.1016/0006-2952(87)90282-6.
C. Bucolo, A. Maltese, F. Maugeri, K.W. Ward, M. Baiula, A. Sparta and S. Spampinato, J. Pharma Pharmacol., 60, 1473 (2008); https://doi.org/10.1211/jpp.60.11.0008.
D. Hadjipavlou-Litina, C. Kontogiorgis, E. Pontiki, M. Dakanali, A. Akoumianaki and H.E. Katerinopoulos, J. Enzyme Inhib. Med. Chem., 22, 287 (2007); https://doi.org/10.1080/14756360601073914.
D. Zavrsnik, S. Muratovic, S. Spirtovic, D. Softic and M. Medic-Saric, Bosn. J. Basic Med. Sci., 8, 277, (2008); https://doi.org/10.17305/bjbms.2008.2933.
M.A. Musa, J.S. Cooperwoods and M.O. Khan, Curr. Med. Chem., 15, 2664 (2008); https://doi.org/10.2174/092986708786242877.
T. Yoshimoto, M. Furukawa, S. Yamamoto, T. Horie and W. Kohno, Biochem. Biophys. Res. Commun. 116, 612 (1983); https://doi.org/10.1016/0006-291X(83)90568-5.
H. Hoeksema, J.L. Johnson and J.W. Hinman, J. Am. Chem. Soc., 77, 6710 (1955); https://doi.org/10.1021/ja01629a129.
U. Galm, S. Heller, S. Shapiro, M. Page, S.M. Li and M. Heide, Antimicrob. Agents Chemoth., 48, 1307 (2004); https://doi.org/10.1128/AAC.48.4.1307-1312.2004.
A. Maxwell, Trends Microbiol., 5, 102, (1997); https://doi.org/10.1016/S0966-842X(96)10085-8.
A. Maxwell and D. M. Lawson, Curr. Top. Med. Chem., 3, 283 (2003); https://doi.org/10.2174/1568026033452500.
J.A. Burlison, C. Avila, G. Viehauer, D.J. Lubbers, J. Holzbeierlein and B.S. Blagg, J. Org. Chem., 73, 2130 (2008); https://doi.org/10.1021/jo702191a.
Y.L. Chen, T.C. Wang, C.C. Tzeng and N.C. Chang, Helv. Chim. Acta, 82, 191 (1999); https://doi.org/10.1002/(SICI)1522-2675(19990210)82:2<191::AIDHLCA191>3.0.CO;2-P.
C. Bocca, L. Gabriel and A. Miglietta, Chem.-Biol. Interactions, 137, 285 (2001); https://doi.org/10.1016/S0009-2797(01)00261-7.
M. Pirmohamed, Br. J. Clin. Pharmacol., 62, 509 (2006); https://doi.org/10.1111/j.1365-2125.2006.02806.x.
S. Thaisrivongs, D.L. Romero, R.A. Tommasi, M.N. Janakiraman, J.W. Strohbach, S.R. Turner, C. Biles, R.R. Morge, P.D. Johnson, P.A. Aristoff, P.K. Tomich, J.C. Lynn, M.M. Horng, K.T. Chong, R.R. Hinshaw, W.J. Howe, B.C. Finzel and K.D. Watenpaugh, J. Med. Chem., 39, 4630 (1996); https://doi.org/10.1021/jm960228q.
R. Alvarez, S. Velazquez, A.S. Felix, S. Aquaro, E.D. Clercq, C.F. Perno, A. Karlsson, J. Balzarini and M.J. Camarasa, J. Med. Chem., 37, 4185 (1994); https://doi.org/10.1021/jm00050a015.
S. Velázquez, R. Alvarez, C. Pérez, F. Gago, E. De Clercq, J. Balzarini and M.-J. Camarasa, Antivir. Chem. Chemother., 9, 481 (1998); https://doi.org/10.1177/095632029800900604.
M.J. Genin, D.A. Allwine, D.J. Anderson, M.R. Barbachyn, D.E. Emmert, S.A. Garmon, D.R. Graber, K.C. Grega, J.B. Hester, D.K. Hutchinson, J. Morris, R.J. Reischer, C.W. Ford, G.E. Zurenko, J.C. Hamel, R.D. Schaadt, D. Stapert and B.H. Yagi, J. Med. Chem., 43, 953 (2000); https://doi.org/10.1021/jm990373e.
L.L. Brockunier, E.R. Parmee, H.O. Ok, M.R. Candelore, M.A. Cascieri, L.F. Colwell Jr, L. Deng, W.P. Feeney, M.J. Forrest, G.J. Hom, D.E. MacIntyre, L. Tota, M.J. Wyvratt, M.H. Fisher and A.E. Weber, Bioorg. Med. Chem. Lett., 10, 2111 (2000); https://doi.org/10.1016/S0960-894X(00)00422-4.
D.P. Levine, Clin. Infect. Dis. 42, 5 (2006); https://doi.org/10.1086/491709.
M.V.N. de. Souza, Expert Opin. Ther. Patents, 18, 1101 (2008); https://doi.org/10.1517/13543776.18.9.1101.
X. Fu, C. Albermann, C. Zhang and J.S. Thorson, Org. Lett., 7, 1513 (2005); https://doi.org/10.1021/ol0501626.
Y. Shi and C.H. Zhou, Bioorg. Med. Chem. Lett., 21, 956 (2011); https://doi.org/10.1016/j.bmcl.2010.12.059.
P. López-Rojas, M. Janeczko, K. Kubiñski, A. Amesty, M. Maslyk and A. Estévez-Braun, Molecules, 23, 199 (2018); https://doi.org/10.3390/molecules23010199.
C.W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 67, 3057 (2002); https://doi.org/10.1021/jo011148j.
V.V. Rostovtsev, L.G. Green, V.V. Fokin and K.B. Sharpless, Angew. Chem. Int. Ed., 41, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AIDANIE2596>3.0.CO;2-4.
H. Singh, J.V. Singh, M.K. Gupta, A.K. Saxena, S. Sharma, K. Nepali and P.M.S. Bedi, Bioorg. Med. Chem. Lett., 27, 3974 (2017); https://doi.org/10.1016/j.bmcl.2017.07.069.