Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analysis of Membranless Formic Acid Fuel Cell using E-Shaped Microfluidic Channel
Corresponding Author(s) : M. Elumalai
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
A microfluidic fuel cell has been fabricated using formic acid in an alkaline media as the fuel and sodium percarbonate in acidic media as the oxidant. Various operating conditions and different cell dimensions were applied to evaluate the fuel cell performance. The laminar flow-based membraneless fuel cell was found to reach a maximum power density of 23.60 mW cm-2 using 1.50 M HCOOH in 3 M NaOH solution as the fuel and 0.15 M percarbonate in 1.50 M H2SO4 solution as the oxidant at room temperature. The fuel cell system has no proton exchange membrane. This simple membraneless fuel cell with a planar structure has a high design flexibility, which enables its easy integration into actual microfluidic systems and miniature power applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Mousavi-Shaegh, N.-T.S.H. Nguyen, S.H. Chan and W. Zhou, Int. J. Hydrogen Energy, 37, 3466 (2012); https://doi.org/10.1016/j.ijhydene.2011.11.051.
- S.F.J. Flipsen, J. Power Sources, 162, 927 (2006); https://doi.org/10.1016/j.jpowsour.2005.07.007.
- E. Kjeang, N. Djilali and D. Sinton, J. Power Sources, 186, 353 (2009); https://doi.org/10.1016/j.jpowsour.2008.10.011.
- J. de Jong, R.G.H. Lammertink and M. Wessling, Lab Chip, 6, 1125 (2006); https://doi.org/10.1039/b603275c.
- A. Li, S.H. Chan and N.T. Nguyen, Sustain. J. Micromechan. Microeng., 17, 1107 (2007); https://doi.org/10.1088/0960-1317/17/6/002.
- U.B. Demirci, J. Power Sources, 169, 239 (2007); https://doi.org/10.1016/j.jpowsour.2007.03.050.
- C.-F. Flores-River, ISRN Applied Math., 2012, Article 695167 (2012); https://doi.org/10.5402/2012/695167.
- F.A. Cotton and G. Wilkilson, Advanced Inorganic Chemistry, Wiley Interscience: New York (1988).
- C. Karunakaran and R. Kamalam, J. Org. Chem., 67, 1118 (2002); https://doi.org/10.1021/jo0158433.
- M. Gowdhamamoorthi, A. Arun, S. Kiruthika and B. Muthukumaran, J. Materials, 2013, Article 5480267 (2013); https://doi.org/10.1155/2013/548026.
- R.S. Jayashree, L. Gancs, E.R. Choban, A. Primak, D. Natarajan, L.J. Markoski and P.J.A. Kenis, J. Am. Chem. Soc., 127, 16758 (2005); https://doi.org/10.1021/ja054599k.
- M.P. Maher, J. Pine, J. Wright and Y. Tai, J. Neurosci. Methods, 87, 45 (1999); https://doi.org/10.1016/S0165-0270(98)00156-3.
- K.B. Min, S. Tanaka and M. Esashi, Electrochemistry (Tokyo Jpn.), 70, 924 (2002).
- J.D. Morse, A.F. Janlowski, R.T. Graff and J.P. Hayes, J. Vac. Sci. Technol. A, 18, 2003 (2000); https://doi.org/10.1116/1.582462.
- J.H. Wee, J. Power Sources, 161, 1 (2006); https://doi.org/10.1016/j.jpowsour.2006.07.032.
- E.G. Dow, R.R. Bessette, G.L. Seeback, C. Marsh-Orndorff, H. Meunier, J. VanZee and M.G. Medeiros, J. Power Sources, 65, 207 (1997); https://doi.org/10.1016/S0378-7753(97)02474-9.
- S.M. Mitrovski, L.C.C. Elliott and R.G. Nuzzo, Langmuir, 20, 6974 (2004); https://doi.org/10.1021/la048417w.
References
S.A. Mousavi-Shaegh, N.-T.S.H. Nguyen, S.H. Chan and W. Zhou, Int. J. Hydrogen Energy, 37, 3466 (2012); https://doi.org/10.1016/j.ijhydene.2011.11.051.
S.F.J. Flipsen, J. Power Sources, 162, 927 (2006); https://doi.org/10.1016/j.jpowsour.2005.07.007.
E. Kjeang, N. Djilali and D. Sinton, J. Power Sources, 186, 353 (2009); https://doi.org/10.1016/j.jpowsour.2008.10.011.
J. de Jong, R.G.H. Lammertink and M. Wessling, Lab Chip, 6, 1125 (2006); https://doi.org/10.1039/b603275c.
A. Li, S.H. Chan and N.T. Nguyen, Sustain. J. Micromechan. Microeng., 17, 1107 (2007); https://doi.org/10.1088/0960-1317/17/6/002.
U.B. Demirci, J. Power Sources, 169, 239 (2007); https://doi.org/10.1016/j.jpowsour.2007.03.050.
C.-F. Flores-River, ISRN Applied Math., 2012, Article 695167 (2012); https://doi.org/10.5402/2012/695167.
F.A. Cotton and G. Wilkilson, Advanced Inorganic Chemistry, Wiley Interscience: New York (1988).
C. Karunakaran and R. Kamalam, J. Org. Chem., 67, 1118 (2002); https://doi.org/10.1021/jo0158433.
M. Gowdhamamoorthi, A. Arun, S. Kiruthika and B. Muthukumaran, J. Materials, 2013, Article 5480267 (2013); https://doi.org/10.1155/2013/548026.
R.S. Jayashree, L. Gancs, E.R. Choban, A. Primak, D. Natarajan, L.J. Markoski and P.J.A. Kenis, J. Am. Chem. Soc., 127, 16758 (2005); https://doi.org/10.1021/ja054599k.
M.P. Maher, J. Pine, J. Wright and Y. Tai, J. Neurosci. Methods, 87, 45 (1999); https://doi.org/10.1016/S0165-0270(98)00156-3.
K.B. Min, S. Tanaka and M. Esashi, Electrochemistry (Tokyo Jpn.), 70, 924 (2002).
J.D. Morse, A.F. Janlowski, R.T. Graff and J.P. Hayes, J. Vac. Sci. Technol. A, 18, 2003 (2000); https://doi.org/10.1116/1.582462.
J.H. Wee, J. Power Sources, 161, 1 (2006); https://doi.org/10.1016/j.jpowsour.2006.07.032.
E.G. Dow, R.R. Bessette, G.L. Seeback, C. Marsh-Orndorff, H. Meunier, J. VanZee and M.G. Medeiros, J. Power Sources, 65, 207 (1997); https://doi.org/10.1016/S0378-7753(97)02474-9.
S.M. Mitrovski, L.C.C. Elliott and R.G. Nuzzo, Langmuir, 20, 6974 (2004); https://doi.org/10.1021/la048417w.