Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Indoor Photochemistry Involving Ozone in Rural Location of Kannur−A Tropical Site in India
Corresponding Author(s) : V. Lekha
Asian Journal of Chemistry,
Vol. 31 No. 10 (2019): Vol 31 Issue 10
Abstract
This study reports the indoor ozone (O3) pollution in the rural location of Kannur, a tropical site in India, during March 2018 and the influence of their most important determinants. Measurements of indoor O3, NO, NO2 and NOx were carried out in a residential building for a period of one week. Measurements were taken from the kitchen, as it had been identified as the most polluted spot. The background concentrations of O3, NO, NO2 and NOx were also monitored. Indoor O3originates mainly from the outdoor environment and is also produced from indoor sources. The results show that there is a higher level of indoor O3 during cooking hours. The study indicated that cooking activities in the kitchen had a strong impact on the indoor O3 level. Ozone is an important gaseous pollutant which may lead to severe health problems such as decreased lung function and respiratory symptoms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.J. Hubbell, A. Hallberg, D.R. McCubbin and E. Post, Environ. Health Perspect., 113, 73 (2005); https://doi.org/10.1289/ehp.7186.
- C.J. Weschler, Environ. Health Perspect., 114, 1489 (2006); https://doi.org/10.1289/ehp.9256.
- K. Elampari, T. Chithambarathanu and R. Sharma Krishna, Indian J. Sci. Technol., 3, 900 (2010).
- A. Gandolfo, V. Gligorovski, V. Bartolomei, S. Tlili, E. Gómez Alvarez, H. Wortham, J. Kleffmann and S. Gligorovski, Build. Environ., 109, 50 (2016); https://doi.org/10.1016/j.buildenv.2016.08.026.
- C.J. Weschler, Indoor Air, 10, 269 (2000); https://doi.org/10.1034/j.1600-0668.2000.010004269.x.
- C.J. Weschler and H.C. Shields, Indoor Air, 10, 92 (2000); https://doi.org/10.1034/j.1600-0668.2000.010002092.x.
- C.J. Weschler, A.T. Hodgson and J.D. Wooley, Environ. Sci. Technol., 26, 2371 (1992); https://doi.org/10.1021/es00036a006.
- M.L. Bell, R.D. Peng and F. Dominici, Environ. Health Perspect., 114, 532 (2006); https://doi.org/10.1289/ehp.8816.
- E. Gomez Alvarez, D. Amedro, C. Afif, S. Gligorovski, C. Schoemaecker, C. Fittschen, J.-F. Doussin and H. Wortham, Proc. Natl. Acad. Sci. USA, 110, 13294 (2013); https://doi.org/10.1073/pnas.1308310110.
- C.J. Weschler, Indoor Air, 21, 205 (2011); https://doi.org/10.1111/j.1600-0668.2011.00713.x.
- V. Bartolomei, M. Sorgel, S. Gligorovski, E.G. Alvarez, A. Gandolfo, R. Strekowski, E. Quivet, A. Held, C. Zetzsch and H. Wortham, Environ. Sci. Pollut. Res. Int., 21, 9259 (2014); https://doi.org/10.1007/s11356-014-2836-5.
- H.S. Lim and G. Kim, Indoor Built Environ., 19, 586 (2010); https://doi.org/10.1177/1420326X10380123.
- E. Gómez Alvarez, M. Sörgel, S. Gligorovski, S. Bassil, V. Bartolomei, B. Coulomb, C. Zetzsch and H. Wortham, Atmos. Environ., 95, 391 (2014); https://doi.org/10.1016/j.atmosenv.2014.06.034.
- G. Parent, Z. Acem, S. Lechene and P. Boulet, Int. J. Therm. Sci., 49, 555 (2010); https://doi.org/10.1016/j.ijthermalsci.2009.08.006.
- S. Gligorovski and C.J. Weschler, Environ. Sci. Technol., 47, 13905 (2013); https://doi.org/10.1021/es404928t.
- W.W. Nazaroff and G.R. Cass, Environ. Sci. Technol., 20, 924 (1986); https://doi.org/10.1021/es00151a012.
- J.N. Pttts Jr., T.J. Wallington, H.W. Biermann and A.M. Winer, Atmos. Environ., 19, 763 (1985); https://doi.org/10.1016/0004-6981(85)90064-2.
- Z. Vecera and P.K. Dasgupta, Int. J. Environ. Anal. Chem., 56, 311 (1994); https://doi.org/10.1080/03067319408034109.
- O. Jorba, D. Dabdub, C. Blaszczak-Boxe, C. Perez, Z. Janjic, M. Baldasano, M. Spada, A. Badia and M. Goncalves, J. Geophys. Res., 117(D13), D13301 (2012); https://doi.org/10.1029/2012JD017730.
- P.O. Wennberg and D. Dabdub, Science, 319, 1624 (2008); https://doi.org/10.1126/science.1155747.
- Y. Li, J. An, M. Kajino, I. Gultepe, Y. Chen, T. Song and J. Xini, Tellus B Chem. Phys. Meterol., 67, Article: 23930 (2015); https://doi.org/10.3402/tellusb.v67.23930.
- J. An, Y. Li, F. Wang and P. Xie, Air Quality-Models and Applications, IntechOpen, Chap. 11, pp 197-210 (2011), https://www.researchgate.net/publication/221912700.
- J.J. Ensberg, M. Carreras-Sospedra and D. Dabdub, Atmos. Chem. Phys., 10, 1171 (2010); https://doi.org/10.5194/acp-10-1171-2010.
- G. Sarwar, R.W. Pinder, K.W. Appel, R. Mathur and A.G. Carlton, Atmos. Environ., 43, 6383 (2009); https://doi.org/10.1016/j.atmosenv.2009.09.012.
- C.H. Halios, V.D. Assimakopoulos, C.G. Helmis and H.A. Flocas, Sci. Total Environ., 337, 183 (2005); https://doi.org/10.1016/j.scitotenv.2004.06.014.
- National Institute of Occupational Health (NIOH), Ahmedabad, Annual Report, NIOH, Ahmedabad, p. 32 (1995).
- R.K. Aakanksha and S.K. Rastogi, Curr. World Environ., 9, 525 (2014); https://doi.org/10.12944/CWE.9.2.37.
- D. Chakraborty, N.K. Mondal and J.K. Datta, Int. J. Sustain. Build Environ., 3, 262 (2014); https://doi.org/10.1016/j.ijsbe.2014.11.002.
- C.J. Weschler and N. Carslaw, Environ. Sci. Technol., 52, 2419 (2018); https://doi.org/10.1021/acs.est.7b06387.
- C.K. Varshney and A.P. Singh, Environmentalist, 23, 127 (2003); https://doi.org/10.1023/A:1024883620408.
- A.A. Zorpas and A. Skouroupatis, Sustain. Cities Soc., 20, 52 (2016); https://doi.org/10.1016/j.scs.2015.10.002.
References
B.J. Hubbell, A. Hallberg, D.R. McCubbin and E. Post, Environ. Health Perspect., 113, 73 (2005); https://doi.org/10.1289/ehp.7186.
C.J. Weschler, Environ. Health Perspect., 114, 1489 (2006); https://doi.org/10.1289/ehp.9256.
K. Elampari, T. Chithambarathanu and R. Sharma Krishna, Indian J. Sci. Technol., 3, 900 (2010).
A. Gandolfo, V. Gligorovski, V. Bartolomei, S. Tlili, E. Gómez Alvarez, H. Wortham, J. Kleffmann and S. Gligorovski, Build. Environ., 109, 50 (2016); https://doi.org/10.1016/j.buildenv.2016.08.026.
C.J. Weschler, Indoor Air, 10, 269 (2000); https://doi.org/10.1034/j.1600-0668.2000.010004269.x.
C.J. Weschler and H.C. Shields, Indoor Air, 10, 92 (2000); https://doi.org/10.1034/j.1600-0668.2000.010002092.x.
C.J. Weschler, A.T. Hodgson and J.D. Wooley, Environ. Sci. Technol., 26, 2371 (1992); https://doi.org/10.1021/es00036a006.
M.L. Bell, R.D. Peng and F. Dominici, Environ. Health Perspect., 114, 532 (2006); https://doi.org/10.1289/ehp.8816.
E. Gomez Alvarez, D. Amedro, C. Afif, S. Gligorovski, C. Schoemaecker, C. Fittschen, J.-F. Doussin and H. Wortham, Proc. Natl. Acad. Sci. USA, 110, 13294 (2013); https://doi.org/10.1073/pnas.1308310110.
C.J. Weschler, Indoor Air, 21, 205 (2011); https://doi.org/10.1111/j.1600-0668.2011.00713.x.
V. Bartolomei, M. Sorgel, S. Gligorovski, E.G. Alvarez, A. Gandolfo, R. Strekowski, E. Quivet, A. Held, C. Zetzsch and H. Wortham, Environ. Sci. Pollut. Res. Int., 21, 9259 (2014); https://doi.org/10.1007/s11356-014-2836-5.
H.S. Lim and G. Kim, Indoor Built Environ., 19, 586 (2010); https://doi.org/10.1177/1420326X10380123.
E. Gómez Alvarez, M. Sörgel, S. Gligorovski, S. Bassil, V. Bartolomei, B. Coulomb, C. Zetzsch and H. Wortham, Atmos. Environ., 95, 391 (2014); https://doi.org/10.1016/j.atmosenv.2014.06.034.
G. Parent, Z. Acem, S. Lechene and P. Boulet, Int. J. Therm. Sci., 49, 555 (2010); https://doi.org/10.1016/j.ijthermalsci.2009.08.006.
S. Gligorovski and C.J. Weschler, Environ. Sci. Technol., 47, 13905 (2013); https://doi.org/10.1021/es404928t.
W.W. Nazaroff and G.R. Cass, Environ. Sci. Technol., 20, 924 (1986); https://doi.org/10.1021/es00151a012.
J.N. Pttts Jr., T.J. Wallington, H.W. Biermann and A.M. Winer, Atmos. Environ., 19, 763 (1985); https://doi.org/10.1016/0004-6981(85)90064-2.
Z. Vecera and P.K. Dasgupta, Int. J. Environ. Anal. Chem., 56, 311 (1994); https://doi.org/10.1080/03067319408034109.
O. Jorba, D. Dabdub, C. Blaszczak-Boxe, C. Perez, Z. Janjic, M. Baldasano, M. Spada, A. Badia and M. Goncalves, J. Geophys. Res., 117(D13), D13301 (2012); https://doi.org/10.1029/2012JD017730.
P.O. Wennberg and D. Dabdub, Science, 319, 1624 (2008); https://doi.org/10.1126/science.1155747.
Y. Li, J. An, M. Kajino, I. Gultepe, Y. Chen, T. Song and J. Xini, Tellus B Chem. Phys. Meterol., 67, Article: 23930 (2015); https://doi.org/10.3402/tellusb.v67.23930.
J. An, Y. Li, F. Wang and P. Xie, Air Quality-Models and Applications, IntechOpen, Chap. 11, pp 197-210 (2011), https://www.researchgate.net/publication/221912700.
J.J. Ensberg, M. Carreras-Sospedra and D. Dabdub, Atmos. Chem. Phys., 10, 1171 (2010); https://doi.org/10.5194/acp-10-1171-2010.
G. Sarwar, R.W. Pinder, K.W. Appel, R. Mathur and A.G. Carlton, Atmos. Environ., 43, 6383 (2009); https://doi.org/10.1016/j.atmosenv.2009.09.012.
C.H. Halios, V.D. Assimakopoulos, C.G. Helmis and H.A. Flocas, Sci. Total Environ., 337, 183 (2005); https://doi.org/10.1016/j.scitotenv.2004.06.014.
National Institute of Occupational Health (NIOH), Ahmedabad, Annual Report, NIOH, Ahmedabad, p. 32 (1995).
R.K. Aakanksha and S.K. Rastogi, Curr. World Environ., 9, 525 (2014); https://doi.org/10.12944/CWE.9.2.37.
D. Chakraborty, N.K. Mondal and J.K. Datta, Int. J. Sustain. Build Environ., 3, 262 (2014); https://doi.org/10.1016/j.ijsbe.2014.11.002.
C.J. Weschler and N. Carslaw, Environ. Sci. Technol., 52, 2419 (2018); https://doi.org/10.1021/acs.est.7b06387.
C.K. Varshney and A.P. Singh, Environmentalist, 23, 127 (2003); https://doi.org/10.1023/A:1024883620408.
A.A. Zorpas and A. Skouroupatis, Sustain. Cities Soc., 20, 52 (2016); https://doi.org/10.1016/j.scs.2015.10.002.